Fitting and Evaluating Simple Linear Regression Models

Justin Post

Modeling |deas

What is a (statistical) model?

A mathematical representation of some phenomenon on which you've observed data
e Form of the model can vary greatly!

NC STATE UNIVERSITY 2 /27

Modeling |deas

What is a (statistical) model?

A mathematical representation of some phenomenon on which you've observed data
e Form of the model can vary greatly!

Simple Linear Regression Model
. response = intercept + slope*predictor + Error
Y; = Bo + bizi + E;

e May make assumptions about how errors are observed

NC STATE UNIVERSITY 397

Simple Linear Regression Model

e First a visual

import pandas as pd

import numpy as np

import seaborn as sns

bike_data = pd.read_csv("https://www4.stat.ncsu.edu/~online/datasets/bikeDetails.csv")
bike_data['log_selling_price'] = np.log(bike_data['selling_price'])
bike_datal['log_km_driven'] = np.log(bike_data['km_driven'])

NC STATE UNIVERSITY 4/27

Simple Linear Regression Model

e First a visual

sns.regplot(x = bike_data["year"], y = bike_data["log_selling_price"])

NC STATE UNIVERSITY N 5 /27

Statistical Learning

Statistical learning - Inference, prediction/classification, and pattern finding

e Supervised learning - a variable (or variables) represents an output or response of
interest

o May model response and
= Make inference on the model parameters
= predict a value or classify an observation

Goal: Understand what it means to be a good predictive model

NC STATE UNIVERSITY 6 /27

Simple Linear Regression Model

Basic model for relating a numeric predictor to a numeric response

response — intercept + slope*predictor + Error

Y, = By + Bix; + E;

NC STATE UNIVERSITY 7 /27

Simple Linear Regression Model

Basic model for relating a numeric predictor to a numeric response
response — intercept + slope*predictor + Error
Y; = o + Bz + E;
Consider a data set on motorcycle sale prices

import pandas as pd
bike_data = pd.read_csv("https://www4.stat.ncsu.edu/~online/datasets/bikeDetails.csv")
print(bike_data.columns)

Index(['name', 'selling_price', 'year', 'seller_type', 'owner', 'km_driven',
#i# 'ex_showroom_price'],
#Hit dtype='object')

bike_data.head()

#t name ... ex_showroom_price
0 Royal Enfield Classic 350 ... NaN
1 Honda Dio ... NaN
2 Royal Enfield Classic Gunmetal Grey ... 148114.0
3 Yamaha Fazer FI V 2.0 [2016-2018] ... 89643.0
4 Yamaha SZ [2013-2014] ... NaN
it 8/27

[5 rows x 7 columns]

Find a Best Fitting Line
 We define some criteria to fit (or train) the model

Model 1: log_selling price = intercept + slope*year + Error
Model 2: log_selling_price = intercept + slope*log_km_driven + Error

[]
[]
9 1'0 1'1 1'2 1'3 1'4 9 z 7
log_km_driven

Training a Model

e We define some criteria to fit (or train) the model
e Loss function - Criteria used to fit or train a model

o For a given numeric response value, y; and prediction, y ;

~ \2

Yi — :&'U (yz - yz) 3 |yz — ?;z|

10 /27

Training a Model

e We define some criteria to fit (or train) the model
e Loss function - Criteria used to fit or train a model

o For a given numeric response value, y; and prediction, y ;

A

~ 2 ~
Yi — Ui (¥ — ¥:)% [y — U4l
o We try to optimize the loss over all the observations used for training

n n

> (wi—9,) > i =94

11 /27

Find @ Best Fitting Line
e In SLR, we often use squared error loss (least squares regression)

e Nice solutions for our estimates exist!

Bo =17 — B,
5 T D=9

12 /27

Find @ Best Fitting Line

e In SLR, we often use squared error loss (least squares regression)

e Nice solutions for our estimates exist!

Bo =17 — B,
5 T D=9

y = bike_datal['log_selling_price']
x = bike_datal'log_km_driven']

blhat = sum((x-x.mean())*(y-y.mean()))/sum((x-x.mean())**2)
bohat = y.mean()-x.mean()*b1hat

print(round(bohat, 4), round(bihat, 4))

14.6356 -0.3911

13 /27

Find @ Best Fitting Line

e In SLR, we often use squared error loss (least squares regression)

e Nice solutions for our estimates exist!

y = bike_datal['log_selling_price']
x = bike_datal'log_km_driven']

blhat = sum((x-x.mean())*(y-y.mean()))/sum((x-x.mean())**2)
bohat = y.mean()-x.mean()*bThat

print(round(bohat, 4), round(bihat, 4))

14.6356 -0.3911

o These give us the values to use with !

14 /27

Simple Linear Regression Model in Python

e Can use linear_model from sklearn module to fit the model

* Note the requirements on the shape of X and the shape of y to pass to the .fit() method

print(bike_datal'log_km_driven'].shape)
(1061,)

print(bike_datal'log_km_driven'].values.reshape(=-1,1).shape)

(1061, 1)

15 /27

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

Simple Linear Regression Model in Python

e Can use linear_model from sklearn module to fit the model

from sklearn import linear_model
reg = linear_model.LinearRegression() #Create a reg object

reg.fit(bike_datal'log_km_driven'].values.reshape(-1,1), bike_datal'log_selling_price'])

print(reg.intercept_, reg.coef_)

14.6355682846293 [-0.39108654]

16 /27

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

Simple Linear Regression Model

e Can use the line for prediction with the .predict() method!

print(reg.intercept_, reg.coef_)
14.6355682846293 [-0.39108654]

predl = reg.predict(np.array([[101, [121, [1411))

predl #each of these represents a 'y-hat' for the given value of x

array([10.72470291, 9.94252984, 9.160356771)

134

6 7 8 9 10 11 12 13 14
log_km_driven

Recenter

Supervised Learning methods try to relate predictors to a response variable through a model
e Lots of common models

o Regression models
o Tree based methods
o Naive Bayes

o k Nearest Neighbors

« For a set of predictor values, each will produce some prediction we can call y

18 /27

Recenter

Supervised Learning methods try to relate predictors to a response variable through a model
e Lots of common models

o Regression models
o Tree based methods
o Naive Bayes

o k Nearest Neighbors

« For a set of predictor values, each will produce some prediction we can call y

Goal: Understand what it means to be a good predictive model. How do we evaluate the
model?

19 /27

Quantifying How Well the Model Predicts

We use a loss function to fit the model. We use a metric to evaluate the model!

o Often use the same loss function for fitting and as the metric
 For a given numeric response value, y; and prediction, y,

(yz' — :&i)27 |yz - :&z|

e Incorporate all points via

1 ™ 1 &
— . c— A- 2 — . c— A.
- E (vi — ;)% - Z_Elﬁ vi — ;]

20 /27

Metric Function

e For a numeric response, we commonly use squared error loss as our metric to evaluate a

prediction

RMSE =

L(yi,9;) = (vi — 9,)*

e Use Root Mean Square Error as a metric across all observations

1 n
— LiaA':
\nz; (i, 9;)

\

1 &)
- ;(yz- — ;)

21 /27

Commonly Used Metrics

For prediction (numeric response)

e Mean Squared Error (MSE) or Root Mean Squared Error (RMSE)
e Mean Absolute Error (MAE or MAD - deviation)

L(yh?ji) — |yz — :&z|

e Huber Loss
o Doesn't penalize large mistakes as much as MSE

22 [27

https://en.wikipedia.org/wiki/Huber_loss

Commonly Used Metrics

For prediction (numeric response)

e Mean Squared Error (MSE) or Root Mean Squared Error (RMSE)
e Mean Absolute Error (MAE or MAD - deviation)

L(i‘lu?;i) — |yz — ?Jz|

e Huber Loss
o Doesn't penalize large mistakes as much as MSE

For classification (categorical response)

Accuracy
log-loss
AUC

F1 Score

23 [27

https://en.wikipedia.org/wiki/Huber_loss

Evaluating our SLR Model

e We could find our metric for our SLR model using the training data...
e Import our MSE metric from sklearn.metrics

import sklearn.metrics as metrics
pred = reg.predict(bike_data["log_km_driven"].values.reshape(-1,1))
print(np.sqrt(metrics.mean_squared_error(bike_datal["log_selling_price"], pred)))

0.5947022682215317
print(metrics.mean_absolute_error(bike_datal["log_selling_price"], pred))

0.46886132002881753

24 [27

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html

Useful for Comparison!

e Fit a competing model with year as the predictor

regl = linear_model.LinearRegression() #Create a reg object
regl.fit(bike_data['year'].values.reshape(-1,1), bike_datal['log_selling_price'])

LinearRegression()
print(regl.intercept_, regl.coef_)

-201.06317651252058 [0.10516552]

e Compare the performance on the training data...

predl = regl.predict(bike_data["year"].values.reshape(-1,1))
print(np.sqrt(metrics.mean_squared_error(bike_datal["log_selling_price"], pred)),
np.sqrt(metrics.mean_squared_error(bike_data["log_selling_price"], pred1)))

0.5947022682215317 0.5482751462879227

25 [27

Training vs Test Sets

Ideally we want our model to predict well for observations it has yet to see!

e For multiple linear regression models, our training MSE will always decrease as we add
more variables to the model...

e We'll need an independent test set to predict on (more on this shortly!)

26 [27

Recap

SLR is one type of model for a continuous type response

SLR Model is fit using some criteria (usually least squares, squared error 1oss)

Must determine a method to judge the model's effectiveness (a metric)

o Metric function measures loss for each prediction
o Combined overall all observations

To obtain a better understanding of the predictive power of a model, we need to apply
our metric to prediction made on a different set of data than that used for training!

27 [27

