
Fitting and Evaluating Simple Linear Regression Models
Justin Post

1 / 27

Modeling Ideas
What is a (statistical) model?

A mathematical representation of some phenomenon on which you've observed data
Form of the model can vary greatly!

2 / 27

Modeling Ideas
What is a (statistical) model?

A mathematical representation of some phenomenon on which you've observed data
Form of the model can vary greatly!

Simple Linear Regression Model

May make assumptions about how errors are observed

response = intercept + slope*predictor + Error

Yi = β0 + β1xi + Ei

3 / 27

Simple Linear Regression Model
First a visual

import pandas as pd
import numpy as np
import seaborn as sns
bike_data = pd.read_csv("https://www4.stat.ncsu.edu/~online/datasets/bikeDetails.csv")
bike_data['log_selling_price'] = np.log(bike_data['selling_price'])
bike_data['log_km_driven'] = np.log(bike_data['km_driven'])

4 / 27

Simple Linear Regression Model
First a visual

sns.regplot(x = bike_data["year"], y = bike_data["log_selling_price"])

5 / 27

Statistical Learning
Statistical learning - Inference, prediction/classification, and pattern finding

Supervised learning - a variable (or variables) represents an output or response of
interest

May model response and
Make inference on the model parameters
predict a value or classify an observation

Goal: Understand what it means to be a good predictive model

6 / 27

Simple Linear Regression Model
Basic model for relating a numeric predictor to a numeric response

response = intercept + slope*predictor + Error

Yi = β0 + β1xi + Ei

7 / 27

Simple Linear Regression Model
Basic model for relating a numeric predictor to a numeric response

Consider a data set on motorcycle sale prices

import pandas as pd
bike_data = pd.read_csv("https://www4.stat.ncsu.edu/~online/datasets/bikeDetails.csv")
print(bike_data.columns)

Index(['name', 'selling_price', 'year', 'seller_type', 'owner', 'km_driven',
'ex_showroom_price'],
dtype='object')

bike_data.head()

name ... ex_showroom_price
0 Royal Enfield Classic 350 ... NaN
1 Honda Dio ... NaN
2 Royal Enfield Classic Gunmetal Grey ... 148114.0
3 Yamaha Fazer FI V 2.0 [2016-2018] ... 89643.0
4 Yamaha SZ [2013-2014] ... NaN

[5 rows x 7 columns]

response = intercept + slope*predictor + Error

Yi = β0 + β1xi + Ei

8 / 27

Find a 'Best' Fitting Line
We define some criteria to fit (or train) the model

Model 1: log_selling_price = intercept + slope*year + Error

Model 2: log_selling_price = intercept + slope*log_km_driven + Error

9 / 27

Training a Model
We define some criteria to fit (or train) the model

Loss function - Criteria used to fit or train a model

For a given numeric response value, and prediction, yi ŷ i

yi − ŷ i, (yi − ŷ i)
2, |yi − ŷ i|

10 / 27

Training a Model
We define some criteria to fit (or train) the model

Loss function - Criteria used to fit or train a model

For a given numeric response value, and prediction,

We try to optimize the loss over all the observations used for training

yi ŷ i

yi − ŷ i, (yi − ŷ i)
2, |yi − ŷ i|

n

∑
i=1

(yi − ŷ i)
2

n

∑
i=1

|yi − ŷ i|

11 / 27

Find a 'Best' Fitting Line
In SLR, we often use squared error loss (least squares regression)

Nice solutions for our estimates exist!

β̂0 = ȳ − x̄β̂1

β̂1 =
∑

n
i=1(xi − x̄)(yi − ȳ)

∑
n

i=1(xi − x̄)2

12 / 27

Find a 'Best' Fitting Line
In SLR, we often use squared error loss (least squares regression)

Nice solutions for our estimates exist!

y = bike_data['log_selling_price']
x = bike_data['log_km_driven']
b1hat = sum((x-x.mean())*(y-y.mean()))/sum((x-x.mean())**2)
b0hat = y.mean()-x.mean()*b1hat
print(round(b0hat, 4), round(b1hat, 4))

14.6356 -0.3911

β̂0 = ȳ − x̄β̂1

β̂1 =
∑

n
i=1(xi − x̄)(yi − ȳ)

∑
n

i=1(xi − x̄)2

13 / 27

Find a 'Best' Fitting Line
In SLR, we often use squared error loss (least squares regression)

Nice solutions for our estimates exist!

y = bike_data['log_selling_price']
x = bike_data['log_km_driven']
b1hat = sum((x-x.mean())*(y-y.mean()))/sum((x-x.mean())**2)
b0hat = y.mean()-x.mean()*b1hat
print(round(b0hat, 4), round(b1hat, 4))

14.6356 -0.3911

These give us the values to use with !

β̂0 = ȳ − x̄β̂1

β̂1 =
∑

n
i=1(xi − x̄)(yi − ȳ)

∑
n

i=1(xi − x̄)2

ŷ

14 / 27

Simple Linear Regression Model in Python
Can use linear_model from sklearn module to fit the model

Note the requirements on the shape of X and the shape of y to pass to the .fit() method

print(bike_data['log_km_driven'].shape)

(1061,)

print(bike_data['log_km_driven'].values.reshape(-1,1).shape)

(1061, 1)

15 / 27

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

Simple Linear Regression Model in Python
Can use linear_model from sklearn module to fit the model

from sklearn import linear_model
reg = linear_model.LinearRegression() #Create a reg object
reg.fit(bike_data['log_km_driven'].values.reshape(-1,1), bike_data['log_selling_price'])

print(reg.intercept_, reg.coef_)

14.6355682846293 [-0.39108654]

16 / 27

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

Simple Linear Regression Model
Can use the line for prediction with the .predict() method!

print(reg.intercept_, reg.coef_)

14.6355682846293 [-0.39108654]

pred1 = reg.predict(np.array([[10], [12], [14]]))
pred1 #each of these represents a 'y-hat' for the given value of x

array([10.72470291, 9.94252984, 9.16035677])

17 / 27

Recenter
Supervised Learning methods try to relate predictors to a response variable through a model

Lots of common models

Regression models
Tree based methods
Naive Bayes
k Nearest Neighbors

For a set of predictor values, each will produce some prediction we can call ŷ

18 / 27

Recenter
Supervised Learning methods try to relate predictors to a response variable through a model

Lots of common models

Regression models
Tree based methods
Naive Bayes
k Nearest Neighbors

For a set of predictor values, each will produce some prediction we can call

Goal: Understand what it means to be a good predictive model. How do we evaluate the
model?

ŷ

19 / 27

Quantifying How Well the Model Predicts
We use a loss function to fit the model. We use a metric to evaluate the model!

Often use the same loss function for fitting and as the metric
For a given numeric response value, and prediction,

Incorporate all points via

yi ŷ i

(yi − ŷ i)
2, |yi − ŷ i|

n

∑
i=1

(yi − ŷ i)
2,

n

∑
i=1

|yi − ŷ i|
1

n

1

n

20 / 27

Metric Function
For a numeric response, we commonly use squared error loss as our metric to evaluate a
prediction

Use Root Mean Square Error as a metric across all observations

L(yi, ŷ i) = (yi − ŷ i)
2

RMSE =


⎷

n

∑
i=1

L(yi, ŷ i) =


⎷

n

∑
i=1

(yi − ŷ i)
21

n

1

n

21 / 27

Commonly Used Metrics
For prediction (numeric response)

Mean Squared Error (MSE) or Root Mean Squared Error (RMSE)
Mean Absolute Error (MAE or MAD - deviation)

Huber Loss
Doesn't penalize large mistakes as much as MSE

L(yi, ŷ i) = |yi − ŷ i|

22 / 27

https://en.wikipedia.org/wiki/Huber_loss

Commonly Used Metrics
For prediction (numeric response)

Mean Squared Error (MSE) or Root Mean Squared Error (RMSE)
Mean Absolute Error (MAE or MAD - deviation)

Huber Loss
Doesn't penalize large mistakes as much as MSE

For classification (categorical response)

Accuracy
log-loss
AUC
F1 Score

L(yi, ŷ i) = |yi − ŷ i|

23 / 27

https://en.wikipedia.org/wiki/Huber_loss

Evaluating our SLR Model
We could find our metric for our SLR model using the training data...
Import our MSE metric from sklearn.metrics

import sklearn.metrics as metrics
pred = reg.predict(bike_data["log_km_driven"].values.reshape(-1,1))
print(np.sqrt(metrics.mean_squared_error(bike_data["log_selling_price"], pred)))

0.5947022682215317

print(metrics.mean_absolute_error(bike_data["log_selling_price"], pred))

0.46886132002881753

24 / 27

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html

Useful for Comparison!
Fit a competing model with year as the predictor

reg1 = linear_model.LinearRegression() #Create a reg object
reg1.fit(bike_data['year'].values.reshape(-1,1), bike_data['log_selling_price'])

LinearRegression()

print(reg1.intercept_, reg1.coef_)

-201.06317651252058 [0.10516552]

Compare the performance on the training data...

pred1 = reg1.predict(bike_data["year"].values.reshape(-1,1))
print(np.sqrt(metrics.mean_squared_error(bike_data["log_selling_price"], pred)),
 np.sqrt(metrics.mean_squared_error(bike_data["log_selling_price"], pred1)))

0.5947022682215317 0.5482751462879227

25 / 27

Training vs Test Sets
Ideally we want our model to predict well for observations it has yet to see!

For multiple linear regression models, our training MSE will always decrease as we add
more variables to the model...

We'll need an independent test set to predict on (more on this shortly!)

26 / 27

Recap
SLR is one type of model for a continuous type response

SLR Model is fit using some criteria (usually least squares, squared error loss)

Must determine a method to judge the model's effectiveness (a metric)

Metric function measures loss for each prediction
Combined overall all observations

To obtain a better understanding of the predictive power of a model, we need to apply
our metric to prediction made on a different set of data than that used for training!

27 / 27

