
Prediction and Training/Test Set Ideas
Justin Post

1 / 18

Predictive Modeling Idea
Choose form of model

Fit model to data using some algorithm

Usually can be written as a problem where we minimize some loss function

Evaluate the model using a metric

RMSE very common for a numeric response

2 / 18

Predictive Modeling Idea
Choose form of model

Fit model to data using some algorithm

Usually can be written as a problem where we minimize some loss function

Evaluate the model using a metric

RMSE very common for a numeric response

Ideally we want our model to predict well for observations it has yet to see!

3 / 18

Training vs Test Sets
Evaluation of predictions over the observations used to fit or train the model is called the
training (set) error
Using RMSE as our metric:

Training RMSE =

⎷

∑
obs used to fit model

(y − ŷ)21

of obs used to fit model

4 / 18

Training vs Test Sets
Evaluation of predictions over the observations used to fit or train the model is called the
training (set) error
Using RMSE as our metric:

If we only consider this, we'll have no idea how the model will fare on data it hasn't seen!

Training RMSE =

⎷

∑
obs used to fit model

(y − ŷ)21

of obs used to fit model

5 / 18

Training vs Test Sets
One method is to split the data into a training set and test set

On the training set we can fit (or train) our models
We can then predict for the test set observations and judge effectiveness with our metric

6 / 18

Example of Fitting and Evaluating Models
Consider our data set on motorcycle sale prices

import pandas as pd
import numpy as np
bike_data = pd.read_csv("https://www4.stat.ncsu.edu/~online/datasets/bikeDetails.csv")
bike_data['log_selling_price'] = np.log(bike_data['selling_price'])
bike_data['log_km_driven'] = np.log(bike_data['km_driven'])
print(bike_data.columns)

Index(['name', 'selling_price', 'year', 'seller_type', 'owner', 'km_driven',
'ex_showroom_price', 'log_selling_price', 'log_km_driven'],
dtype='object')

7 / 18

Example of Fitting and Evaluating Models
Response variable of log_selling_price = ln(selling_price)

Consider three linear regression models:

Model 1: log_selling_price = intercept + slope*year + Error

Model 2: log_selling_price = intercept + slope*log_km_driven + Error

Model 3: log_selling_price = intercept + slope*log_km_driven + slope*year + Error

8 / 18

Fitting the Models with sklearn
from sklearn import linear_model
reg1 = linear_model.LinearRegression() #Create a reg object
reg2 = linear_model.LinearRegression() #Create a reg object
reg3 = linear_model.LinearRegression() #Create a reg object
reg1.fit(bike_data['year'].values.reshape(-1,1), bike_data['log_selling_price'])

reg2.fit(bike_data['log_km_driven'].values.reshape(-1,1), bike_data['log_selling_price'])
reg3.fit(bike_data[['year', 'log_km_driven']], bike_data['log_selling_price'])

print(reg1.intercept_, reg1.coef_)

-201.06317651252058 [0.10516552]

print(reg2.intercept_, reg2.coef_)

14.6355682846293 [-0.39108654]

print(reg3.intercept_, reg3.coef_)

-148.79329107788152 [0.0803366 -0.22686129]

9 / 18

Example of Fitting and Evaluating Models
Now we have the fitted models. Want to use them to predict the response

Model 1: ˆlog_selling_price = −201.06 + 0.105 ∗ year

Model 2: ˆlog_selling_price = 14.64 − 0.391 ∗ log_km_driven

Model 3: ˆlog_selling_price = −148.79 + 0.080 ∗ year − 0.227 ∗ log_km_driven

10 / 18

Example of Fitting and Evaluating Models
Now we have the fitted models. Want to use them to predict the response

Use the .predict() method

pred1 = reg1.predict(bike_data['year'].values.reshape(-1,1))

pred2 = reg2.predict(bike_data['log_km_driven'].values.reshape(-1,1))
pred3 = reg3.predict(bike_data[['year', 'log_km_driven']])
pd.DataFrame(zip(pred1, pred2, pred3, bike_data['log_selling_price']),
 columns = ["Model1", "Model2", "Model3", "Actual"])

Model1 Model2 Model3 Actual
0 11.266005 12.344609 12.077366 12.072541
1 11.055674 11.256811 11.285683 10.714418
2 11.160839 10.962225 11.195136 11.918391
3 10.845343 10.707789 10.806533 11.082143
4 10.424681 10.743366 10.505825 9.903488
##

Model 1: ˆlog_selling_price = −201.06 + 0.105 ∗ year

Model 2: ˆlog_selling_price = 14.64 − 0.391 ∗ log_km_driven

Model 3: ˆlog_selling_price = −148.79 + 0.080 ∗ year − 0.227 ∗ log_km_driven

11 / 18

Example of Fitting and Evaluating Models
Find training RMSE

from sklearn.metrics import mean_squared_error
RMSE1 = np.sqrt(mean_squared_error(y_true = bike_data['log_selling_price'], y_pred = pred1))
RMSE2 = np.sqrt(mean_squared_error(bike_data['log_selling_price'], pred2))
RMSE3 = np.sqrt(mean_squared_error(bike_data['log_selling_price'], pred3))
print(round(RMSE1, 3), round(RMSE2, 3), round(RMSE3, 3))

0.548 0.595 0.511

Estimate of RMSE is too optimistic compared to how the model would perform with new
data! Redo with train/test split!

12 / 18

Train/Test Split
sklearn has a function to make splitting data easy
Commonly use 80/20 or 70/30 split

13 / 18

Train/Test Split
sklearn has a function to make splitting data easy
Commonly use 80/20 or 70/30 split

from sklearn.model_selection import train_test_split
#Function will return a list with four things:
#Test/train for predictors (X)
#Test/train for response (y)
X_train, X_test, y_train, y_test = train_test_split(
 bike_data[["year", "log_km_driven"]],
 bike_data["log_selling_price"],
 test_size=0.20,

 random_state=422)

14 / 18

Fit or Train Model
We then fit the model on the training set

reg1 = linear_model.LinearRegression() #Create a reg object
reg2 = linear_model.LinearRegression() #Create a reg object
reg3 = linear_model.LinearRegression() #Create a reg object
reg1.fit(X_train['year'].values.reshape(-1,1), y_train.values)

reg2.fit(X_train['log_km_driven'].values.reshape(-1,1), y_train.values)
reg3.fit(X_train[['year', 'log_km_driven']], y_train.values)

15 / 18

Fit or Train Model
We then fit the model on the training set

reg1 = linear_model.LinearRegression() #Create a reg object
reg2 = linear_model.LinearRegression() #Create a reg object
reg3 = linear_model.LinearRegression() #Create a reg object
reg1.fit(X_train['year'].values.reshape(-1,1), y_train.values)

reg2.fit(X_train['log_km_driven'].values.reshape(-1,1), y_train.values)
reg3.fit(X_train[['year', 'log_km_driven']], y_train.values)

Can look at training RMSE if we want

train_RMSE1 = np.sqrt(mean_squared_error(y_train.values,
 reg1.predict(X_train['year'].values.reshape(-1,1))))
train_RMSE2 = np.sqrt(mean_squared_error(y_train.values,
 reg2.predict(X_train['log_km_driven'].values.reshape(-1,1))))
train_RMSE3 = np.sqrt(mean_squared_error(y_train.values,
 reg3.predict(X_train[['year', 'log_km_driven']])))
print(round(train_RMSE1, 3), round(train_RMSE2, 3), round(train_RMSE3, 3))

0.557 0.593 0.516

16 / 18

Test Error
Now we look at predictions on the test set

Test data not used when training model

test_RMSE1 = np.sqrt(mean_squared_error(y_test.values,
 reg1.predict(X_test['year'].values.reshape(-1,1))))
test_RMSE2 = np.sqrt(mean_squared_error(y_test.values,
 reg2.predict(X_test['log_km_driven'].values.reshape(-1,1))))
test_RMSE3 = np.sqrt(mean_squared_error(y_test.values,
 reg3.predict(X_test[['year', 'log_km_driven']])))
print(round(test_RMSE1, 3), round(test_RMSE2, 3), round(test_RMSE3, 3))

0.513 0.603 0.491

When choosing a model, if the RMSE values were 'close', we'd want to consider the
interpretability of the model (and perhaps the assumptions if we wanted to do inference
too!)

17 / 18

Recap
Choose form of model
Fit model to data using some algorithm

Usually can be written as a problem where we minimize some loss function

Evaluate the model using a metric

RMSE very common for a numeric response

Ideally we want our model to predict well for observations it has yet to see!

18 / 18

