Prediction and Training/Test Set Ideas

Justin Post

Predictive Modeling Idea

e Choose form of model
e Fit model to data using some algorithm

o Usually can be written as a problem where we minimize some loss function
e Evaluate the model using a metric

o RMSE very common for a numeric response

NC STATE UNIVERSITY 2/18

Predictive Modeling Idea

Choose form of model

Fit model to data using some algorithm

o Usually can be written as a problem where we minimize some loss function

Evaluate the model using a metric

o RMSE very common for a numeric response

Ideally we want our model to predict well for observations it has yet to see!

NC STATE UNIVERSITY 3/18

Training vs Test Sets

o Evaluation of predictions over the observations used to fit or train the model is called the
training (set) error
e Using RMSE as our metric:

Training RMSE = L Z 7)2
ratiing ~A| # of obs used to fit model (v—9)
\ obs used to fit model

NC STATE UNIVERSITY 4/18

Training vs Test Sets

o Evaluation of predictions over the observations used to fit or train the model is called the

training (set) error
e Using RMSE as our metric:

Training RMSE = L Z 7)2
ratiing ~A| # of obs used to fit model (v—9)
\ obs used to fit model

o If we only consider this, we'll have no idea how the model will fare on data it hasn't seen!

NC STATE UNIVERSITY 5/18

Training vs Test Sets

One method is to split the data into a training set and test set

e On the training set we can fit (or train) our models
 We can then predict for the test set observations and judge effectiveness with our metric

Available Data

\

Training Testing

NC STATE UNIVERSITY 6/18

Example of Fitting and Evaluating Models

Consider our data set on motorcycle sale prices

import pandas as pd

import numpy as np

bike_data = pd.read_csv("https://www4.stat.ncsu.edu/~online/datasets/bikeDetails.csv")
bike_data['log_selling_price'] = np.log(bike_data['selling_price'])
bike_datal['log_km_driven'] = np.log(bike_data['km_driven'])

print(bike_data.columns)

Index(['name', 'selling_price', 'year', 'seller_type', 'owner', 'km_driven',
H#i# 'ex_showroom_price', 'log_selling_price', 'log_km_driven'],
#Hit dtype='object")

NC STATE UNIVERSITY 7/18

Example of Fitting and Evaluating Models

e Response variable of log_selling_price = In(selling_price)
e Consider three linear regression models:
Model 1: log_selling_price = intercept + slope*year + Error
Model 2: log_selling_price = intercept + slope*log_km_driven + Error

Model 3: log_selling_price = intercept + slope*log_km_driven + slope*year + Error

NC STATE UNIVERSITY 8/18

Fitting the Models with sklearn

regi
reg?

from sklearn import linear_model
reg3 =

print(regl.intercept_, regl.coef_)
-201.06317651252058 [0.10516552]

print(reg2.intercept_, reg2.coef_)
14.6355682846293 [-0.39108654]

print(reg3.intercept_, reg3.coef_)

-148.79329107788152 [0.0803366

linear_model.LinearRegression() #Create a reg object
linear_model.LinearRegression() #Create a reg object
linear_model.LinearRegression() #Create a reg object
regl.fit(bike_data['year'].values.reshape(-1,1), bike_datal['log_selling_price'])
reg2.fit(bike_data['log_km_driven'].values.reshape(-1,1), bike_datal'log_selling_price'])
reg3.fit(bike_datal['year', 'log_km_driven']], bike_data['log_selling_price'])

-0.22686129]

9/18

Example of Fitting and Evaluating Models

e« Now we have the fitted models. Want to use them to predict the response
Model 1: log_semn\g_price = —201.06 + 0.105 * year
Model 2: log_semn\g_price = 14.64 — 0.391 * log_km_driven

Model 3: log_se@_price = —148.79 + 0.080 * year — 0.227 * log_km_driven

10/18

Example of Fitting and Evaluating Models

e« Now we have the fitted models. Want to use them to predict the response
Model 1: log_semn\g_price = —201.06 + 0.105 * year
Model 2: log_semn\g_price = 14.64 — 0.391 * log_km_driven

Model 3: log_sem_price = —148.79 + 0.080 * year — 0.227 * log_km_driven

e Use the .predict() method

predl = regl.predict(bike_data['year'].values.reshape(-1,1))

pred2 = reg2.predict(bike_data['log_km_driven'].values.reshape(-1,1))

pred3 = reg3.predict(bike_datal[['year', 'log_km_driven']])

pd.DataFrame(zip(predl, pred2, pred3, bike_datal['log_selling_price']),
columns = ["Modell", "Model2", "Model3", "Actual"l])

#t Model1 Model? Model3 Actual
0 11.266005 12.344609 12.077366 12.072541
1 11.055674 11.256811 11.285683 10.714418
##H 2 11.160839 10.962225 11.195136 11.918391
3 10.845343 10.707789 10.806533 11.082143 11 / 18
##t 4 10.424681 10.743366 10.505825 9.903488

HH

Example of Fitting and Evaluating Models

e Find training RMSE

from sklearn.metrics import mean_squared_error

RMSE1 = np.sqrt(mean_squared_error(y_true = bike_data['log_selling_price'], y_pred = predl))
RMSE2 = np.sqrt(mean_squared_error(bike_data['log_selling_price'], pred2))
RMSE3 = np.sqrt(mean_squared_error(bike_datal['log_selling_price'], pred3))

print(round(RMSE1, 3), round(RMSE2, 3), round(RMSE3, 3))

0.548 0.595 0.511

o Estimate of RMSE is too optimistic compared to how the model would perform with new
data! Redo with train/test split!

12 /18

Train/Test Split

e sklearn has a function to make splitting data easy
e Commonly use 80/20 or 70/30 split

13/18

Train/Test Split

e sklearn has a function to make splitting data easy
e Commonly use 80/20 or 70/30 split

from sklearn.model_selection import train_test_split

#Function will return a list with four things:

#Test/train for predictors (X)

#Test/train for response (y)

X_train, X_test, y_train, y_test = train_test_split(
bike_datal[["year", "log_km_driven"1]],
bike_datal["log_selling_price"],
test_size=0.20,

random_state=422)

14 /18

Fit or Train Model

 We then fit the model on the training set

regl = linear_model.LinearRegression() #Create a reg object
reg2 = linear_model.LinearRegression() #Create a reg object
reg3 = linear_model.LinearRegression() #Create a reg object

regl.fit(X_train['year'].values.reshape(-1,1), y_train.values)

reg2.fit(X_train['log_km_driven'].values.reshape(=-1,1), y_train.values)
reg3.fit(X_train[['year', 'log_km_driven']], y_train.values)

15/18

Fit or Train Model

 We then fit the model on the training set

regl = linear_model.LinearRegression() #Create a reg object
reg2 = linear_model.LinearRegression() #Create a reg object
reg3 = linear_model.LinearRegression() #Create a reg object

regl.fit(X_train['year'].values.reshape(-1,1), y_train.values)

reg2.fit(X_train['log_km_driven'].values.reshape(=-1,1), y_train.values)
reg3.fit(X_train[['year', 'log_km_driven']], y_train.values)

e Can look at training RMSE if we want

train_RMSE1

np.sqrt(mean_squared_error(y_train.values,

regl.predict(X_train['year'].values.reshape(-1,1))))
np.sqrt(mean_squared_error(y_train.values,

reg2.predict(X_train['log_km_driven'].values.reshape(=-1,1))))
np.sqrt(mean_squared_error(y_train.values,

reg3.predict(X_train[['year', 'log_km_driven']])))
print(round(train_RMSE1, 3), round(train_RMSE2, 3), round(train_RMSE3, 3))

train_RMSE2

train_RMSE3

0.557 0.593 0.516

16 /18

Test Error

 Now we look at predictions on the test set
o Test data not used when training model

test_RMSE1 = np.sqrt(mean_squared_error(y_test.values,
regl.predict(X_test['year'].values.reshape(-1,1))))
test_RMSE2 = np.sqrt(mean_squared_error(y_test.values,
reg2.predict(X_test['log_km_driven'].values.reshape(-1,1))))
test_RMSE3 = np.sqrt(mean_squared_error(y_test.values,

reg3.predict(X_test[['year', 'log_km_driven'11)))
print(round(test_RMSE1, 3), round(test_RMSE2, 3), round(test_RMSE3, 3))

0.513 0.603 0.491

« When choosing a model, if the RMSE values were 'close’, we'd want to consider the
interpretability of the model (and perhaps the assumptions if we wanted to do inference
too!)

17 /18

Recap

Choose form of model
Fit model to data using some algorithm
o Usually can be written as a problem where we minimize some loss function

Evaluate the model using a metric

o RMSE very common for a numeric response

Ideally we want our model to predict well for observations it has yet to see!

18/18

