
Multiple Linear Regression
Justin Post

1 / 40

Recap
Given a model, we fit the model using data

Must determine how well the model predicts on new data
Create a test set
Judge effectiveness using a metric on predictions made from the model

2 / 40

Regression Modeling Ideas
For a set of observations , we may want to predict a future value

Often use the sample mean to do so, (an estimate of)

y1, . . . , yn

ȳ E(Y)

3 / 40

Regression Modeling Ideas
For a set of observations , we may want to predict a future value

Often use the sample mean to do so, (an estimate of)

Now consider having pairs

y1, . . . , yn

ȳ E(Y)

(x1, y1), (x2, y2), . . . (xn, yn)

4 / 40

Regression Modeling Ideas
Often use a linear (in the parameters) model for prediction

SLR model: E(Y |x) = β0 + β1x

5 / 40

Regression Modeling Ideas
Can include more terms on the right hand side (RHS)

Multiple Linear Regression Model: E(Y |x) = β0 + β1x + β2x2

6 / 40

Regression Modeling Ideas
Can include more terms on the right hand side (RHS)

Multiple Linear Regression Model: E(Y |x) = β0 + β1x + β2x2 + β3x3

7 / 40

Regression Modeling Ideas
We model the mean response for a given value
With multiple predictors or 's, we do the same idea!

x
x

8 / 40

Regression Modeling Ideas
Including a main effect for two predictors fits the best plane through the data

Multiple Linear Regression Model: E(Y |x1, x2) = β0 + β1x1 + β2x2

9 / 40

Regression Modeling Ideas
Including main effects and an interaction effect allows for a more flexible surface

Multiple Linear Regression Model: E(Y |x1, x2) = β0 + β1x1 + β2x2 + β3x1x2

10 / 40

Regression Modeling Ideas
Including main effects and an interaction effect allows for a more flexible surface

Interaction effects allow for the effect of one variable to depend on the value of another

Model fit previously gives

 = (19.005) + (-0.791)x1 + (5.631)x2 + (-12.918)x1x2ŷ

11 / 40

Regression Modeling Ideas
Including main effects and an interaction effect allows for a more flexible surface

Interaction effects allow for the effect of one variable to depend on the value of another

Model fit previously gives

 = (19.005) + (-0.791)x1 + (5.631)x2 + (-12.918)x1x2

For = 0, the slope on is (5.631)+0* (-12.918) = 5.631

ŷ

x1 x2

12 / 40

Regression Modeling Ideas
Including main effects and an interaction effect allows for a more flexible surface

Interaction effects allow for the effect of one variable to depend on the value of another

Model fit previously gives

 = (19.005) + (-0.791)x1 + (5.631)x2 + (-12.918)x1x2

For = 0, the slope on is (5.631)+0* (-12.918) = 5.631

For = 0.5, the slope on is (5.631)+0.5*(-12.918) = -0.828

ŷ

x1 x2

x1 x2

13 / 40

Regression Modeling Ideas
Including main effects and an interaction effect allows for a more flexible surface

Interaction effects allow for the effect of one variable to depend on the value of another

Model fit previously gives

 = (19.005) + (-0.791)x1 + (5.631)x2 + (-12.918)x1x2

For = 0, the slope on is (5.631)+0* (-12.918) = 5.631

For = 0.5, the slope on is (5.631)+0.5*(-12.918) = -0.828

For = 1, the slope on is (5.631)+1*(-12.918) = -7.286

Similarly, the slope on depends on !

ŷ

x1 x2

x1 x2

x1 x2

x1 x2

14 / 40

Regression Modeling Ideas
Including main effects and an interaction effect allows for a more flexible surface
Can also include higher order polynomial terms

Multiple Linear Regression Model: E(Y |x1, x2) = β0 + β1x1 + β2x2 + β3x1x2 + β4x2
1

15 / 40

Regression Modeling Ideas
Can also include categorical variables through dummy or indicator variables

Categorical variable with value of and
Define if variable is
Define if variable is

Success Failure
x2 = 0 Failure
x2 = 1 Success

16 / 40

Regression Modeling Ideas
Can also include categorical variables through dummy or indicator variables

Categorical variable with value of and
Define if variable is
Define if variable is

Success Failure
x2 = 0 Failure
x2 = 1 Success

17 / 40

Regression Modeling Ideas
Define if variable is
Define if variable is

x2 = 0 Failure
x2 = 1 Success

Separate Intercept Model: E(Y |x) = β0 + β1x1 + β2x2

18 / 40

Regression Modeling Ideas
Define if variable is
Define if variable is

x2 = 0 Failure
x2 = 1 Success

Separate Intercept and Slopes Model: E(Y |x) = β0 + β1x1 + β2x2 + β3x1x2

19 / 40

Regression Modeling Ideas
Define if variable is
Define if variable is

x2 = 0 Failure
x2 = 1 Success

Separate Quadratics Model: E(Y |x) = β0 + β1x2 + β2x1 + β3x1x2 + β4x2
1 + β5x2

1x2

20 / 40

Regression Modeling Ideas
If your categorical variable has more than k>2 categories, define k-1 dummy variables

Categorical variable with values of "Assistant", "Contractor", "Executive"
Define if variable is or
Define if variable is
Define if variable is or
Define if variable is

x2 = 0 Executive Contractor
x2 = 1 Assistant
x3 = 0 Contractor Assistant
x3 = 1 Executive

21 / 40

Regression Modeling Ideas
If your categorical variable has more than k>2 categories, define k-1 dummy variables

Categorical variable with values of "Assistant", "Contractor", "Executive"
Define if variable is or
Define if variable is
Define if variable is or
Define if variable is

What is implied if and are both zero?

x2 = 0 Executive Contractor
x2 = 1 Assistant
x3 = 0 Contractor Assistant
x3 = 1 Executive

Separate Intercepts Model: E(Y |x) = β0 + β1x1 + β2x2 + β3x3

x2 x3

22 / 40

Fitting an MLR Model
Big Idea: Trying to find the line, plane, saddle, etc. of best fit through points

How do we do the fit??

Usually minimize the sum of squared residuals (errors)

23 / 40

Fitting an MLR Model
Big Idea: Trying to find the line, plane, saddle, etc. of best fit through points

How do we do the fit??

Usually minimize the sum of squared residuals (errors)

Residual = observed - predicted or yi − ŷ i

min
β̂

′
s

n

∑
i=1

(yi − (β̂0 + β̂1x1i+. . . +β̂pxpi))2

24 / 40

Fitting an MLR Model
Big Idea: Trying to find the line, plane, saddle, etc. of best fit through points

How do we do the fit??

Usually minimize the sum of squared residuals (errors)

Residual = observed - predicted or

Closed-form results exist for easy calculation via software!

yi − ŷ i

min
β̂

′
s

n

∑
i=1

(yi − (β̂0 + β̂1x1i+. . . +β̂pxpi))2

25 / 40

Fitting a Linear Regression Model in Python
Use sklearn package
Create a LinearRegression() instance
Use the .fit() method to fit the model

26 / 40

Fitting a Linear Regression Model in Python
Use sklearn package
Create a LinearRegression() instance
Use the .fit() method to fit the model

import pandas as pd
import numpy as np
bike_data = pd.read_csv("https://www4.stat.ncsu.edu/~online/datasets/bikeDetails.csv")
#create response and new predictor
bike_data['log_selling_price'] = np.log(bike_data['selling_price'])
bike_data['log_km_driven'] = np.log(bike_data['km_driven'])

27 / 40

Fitting a Linear Regression Model in Python
Use sklearn package
Create a LinearRegression() instance
Use the .fit() method to fit the model

import pandas as pd
import numpy as np
bike_data = pd.read_csv("https://www4.stat.ncsu.edu/~online/datasets/bikeDetails.csv")
#create response and new predictor
bike_data['log_selling_price'] = np.log(bike_data['selling_price'])
bike_data['log_km_driven'] = np.log(bike_data['km_driven'])

from sklearn import linear_model
slr_fit = linear_model.LinearRegression() #Create a reg object
slr_fit.fit(bike_data['log_km_driven'].values.reshape(-1,1), bike_data['log_selling_price'].values)

print(slr_fit.intercept_, slr_fit.coef_)

14.6355682846293 [-0.39108654]

28 / 40

Fitting a Linear Regression Model in Python
import matplotlib.pyplot as plt
preds = slr_fit.predict(bike_data['log_km_driven'].values.reshape(-1,1))

plt.scatter(bike_data['log_km_driven'].values.reshape(-1,1), bike_data['log_selling_price'].values)

plt.plot(bike_data['log_km_driven'].values.reshape(-1,1), preds, 'red')
plt.title("SLR Fit")
plt.xlabel('log_km_driven')
plt.ylabel('log_selling_price')

29 / 40

Add Dummy Variables for a Categorical Predictor
get_dummies() function from pandas is useful

pd.get_dummies(data = bike_data['owner'])

1st owner 2nd owner 3rd owner 4th owner
0 1 0 0 0
1 1 0 0 0
2 1 0 0 0
3 1 0 0 0
4 0 1 0 0
...
1056 1 0 0 0
1057 1 0 0 0
1058 0 1 0 0
1059 1 0 0 0
1060 1 0 0 0

[1061 rows x 4 columns]

30 / 40

Add Dummy Variables for a Categorical Predictor
get_dummies() function from pandas is useful

pd.get_dummies(data = bike_data['owner'])

1st owner 2nd owner 3rd owner 4th owner
0 1 0 0 0
1 1 0 0 0
2 1 0 0 0
3 1 0 0 0
4 0 1 0 0
...
1056 1 0 0 0
1057 1 0 0 0
1058 0 1 0 0
1059 1 0 0 0
1060 1 0 0 0

[1061 rows x 4 columns]

If we use just the first variable created, we'll have a 1 owner vs more than 1 owner
binary variable

31 / 40

Fit a Model with Dummy Variables
Add the binary variable and fit the model

bike_data['one_owner'] = pd.get_dummies(data = bike_data['owner'])['1st owner']
mlr_fit = linear_model.LinearRegression() #Create a reg object
mlr_fit.fit(bike_data[['log_km_driven','one_owner']], bike_data['log_selling_price'].values)

print(mlr_fit.intercept_, mlr_fit.coef_)

14.57054164578387 [-0.38893985 0.05002779]

32 / 40

Fit a Model with Dummy Variables
Plot these fits on the same graph

preds1 = mlr_fit.predict(bike_data.loc[bike_data['one_owner'] == 0, ['log_km_driven', 'one_owner']])

preds2 = mlr_fit.predict(bike_data.loc[bike_data['one_owner'] == 1, ['log_km_driven', 'one_owner']])

plt.scatter(bike_data['log_km_driven'].values.reshape(-1,1), bike_data['log_selling_price'].values,
 c = bike_data['one_owner'].values)
plt.plot(bike_data.loc[bike_data['one_owner'] == 0, ['log_km_driven']], preds1,
 c = 'orange', label = "One owner")
plt.plot(bike_data.loc[bike_data['one_owner'] == 1, ['log_km_driven']], preds2,
 c = 'purple', label = "Multiple owner")
plt.title("Different Intercept SLR Fit")
plt.xlabel('log_km_driven')
plt.ylabel('log_selling_price')
plt.legend()

33 / 40

Fit a Model with Dummy Variables
Plot these fits on the same graph

34 / 40

Choosing an MLR Model
Given a bunch of predictors, tons of models you could fit! How to choose?

Many variable selection methods exist...

If you care mainly about prediction, just use cross-validation or training/test split!

35 / 40

Compare Multiple Models
We've seen how to split our data into a training and test set

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
 bike_data[["year", "log_km_driven", "one_owner"]],
 bike_data["log_selling_price"],
 test_size=0.20,

 random_state=42)

36 / 40

Compare Multiple Models
We've seen how to split our data into a training and test set

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
 bike_data[["year", "log_km_driven", "one_owner"]],
 bike_data["log_selling_price"],
 test_size=0.20,

 random_state=42)

Fit competing models on the training set

mlr_fit = linear_model.LinearRegression().fit(X_train[['log_km_driven','one_owner']], y_train)
slr_fit = linear_model.LinearRegression().fit(X_train['log_km_driven'].values.reshape(-1,1), y_train)

cat_fit = linear_model.LinearRegression().fit(X_train['one_owner'].values.reshape(-1,1), y_train)

37 / 40

Compare Multiple Models
Look at training RMSE for comparison

from sklearn.metrics import mean_squared_error
np.sqrt(mean_squared_error(y_train, mlr_fit.predict(X_train[["log_km_driven", "one_owner"]])))

0.5944388369922229

np.sqrt(mean_squared_error(y_train, slr_fit.predict(X_train["log_km_driven"].values.reshape(-1,1))))

0.594953681655801

np.sqrt(mean_squared_error(y_train, cat_fit.predict(X_train["one_owner"].values.reshape(-1,1))))

0.7014857593074377

38 / 40

Compare Multiple Models
What we care about is test set RMSE though!

np.sqrt(mean_squared_error(y_test, mlr_fit.predict(X_test[["log_km_driven", "one_owner"]])))

0.5954962522276135

np.sqrt(mean_squared_error(y_test, slr_fit.predict(X_test["log_km_driven"].values.reshape(-1,1))))

0.5943180161119049

np.sqrt(mean_squared_error(y_test, cat_fit.predict(X_test["one_owner"].values.reshape(-1,1))))

0.7319099074576736

39 / 40

Recap
Multiple Linear Regression models are a common model used for a numeric response

Generally fit via minimizing the sum of squared residuals or errors

Could fit using sum of absolute deviation, or other metric

Can include polynomial terms, interaction terms, and categorical variables through
dummy (indicator) variables

Good metric to compare models on is the RMSE on a test set

40 / 40

