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Recap
Judge the model's effectiveness using a Loss function

Often split data into a training and test set

Perhaps 70/30 or 80/20

Cross-validation gives a way to use more of the data while still seeing how the model
does on test data

Commonly 5 fold or 10 fold is done
Once a best model is chosen, model is refit on entire data set
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Recap
Judge the model's effectiveness using a Loss function

Often split data into a training and test set

Perhaps 70/30 or 80/20

Cross-validation gives a way to use more of the data while still seeing how the model
does on test data

Commonly 5 fold or 10 fold is done
Once a best model is chosen, model is refit on entire data set

Often use both! Let's see why by introducing a model with a tuning parameter
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LASSO Model
Least Angle Subset and Selection Operator or LASSO

Similar to Least Squares but a penalty is placed on the sum of the absolute values of
the regression coefficients

 (>0) is called a tuning parameterα

min
β ′s

n

∑
i=1

(yi − (β0 + β1x1i+. . . +βpxpi))2 + α

p

∑
j=1

|βj|
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https://www.jstor.org/stable/2346178


LASSO Model
Least Angle Subset and Selection Operator or LASSO

Similar to Least Squares but a penalty is placed on the sum of the absolute values of
the regression coefficients
Sets coefficients to 0 as you 'shrink'!
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https://www.jstor.org/stable/2346178


Tuning Parameter
When choosing the tuning parameter, we are really considering a family of models!

Consider an  (small amount of shrinkage here)

from sklearn import linear_model
lasso = linear_model.Lasso(alpha=0.1) 
lasso.fit(bike_data[["year", "log_km_driven"]].values, bike_data["log_selling_price"].values)

print(lasso.intercept_,lasso.coef_)

## -164.61209472866094 [ 0.08761607 -0.11092474]

α = 0.1
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Tuning Parameter
When choosing the tuning parameter, we are really considering a family of models!

Consider an  (small amount of shrinkage here)

from sklearn import linear_model
lasso = linear_model.Lasso(alpha=0.1) 
lasso.fit(bike_data[["year", "log_km_driven"]].values, bike_data["log_selling_price"].values)

print(lasso.intercept_,lasso.coef_)

## -164.61209472866094 [ 0.08761607 -0.11092474]

Consider an  (a larger amount of shrinkage)

lasso = linear_model.Lasso(alpha=1.05) 
lasso.fit(bike_data[["year", "log_km_driven"]].values, bike_data["log_selling_price"].values)

print(lasso.intercept_,lasso.coef_)

## -86.65630892150762 [ 0.04835598 -0.        ]

α = 0.1

α = 1.05
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LASSO Fits Visual
Perfect place for CV to help select the best !

## (-0.09950000000000003, 2.3095000000000003, -0.23074900910594773, 0.1099672686377952)

α
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Using CV to Select the Tuning Parameter
Return the optimal  using LassoCV

from sklearn.linear_model import LassoCV
lasso_mod = LassoCV(cv=5, random_state=0, alphas = np.linspace(0,2.2,100)) \
    .fit(bike_data[["year", "log_km_driven"]].values,
          bike_data["log_selling_price"].values)

α
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Using CV to Select the Tuning Parameter
Return the optimal  using LassoCV

pd.DataFrame(zip(lasso_mod.alphas, lasso_mod.mse_path_), columns = ["alpha_value", "MSE_by_fold"])

##     alpha_value                                        MSE_by_fold
## 0      0.000000  [0.5496710875578059, 0.6805679103740427, 0.500...
## 1      0.022222  [0.5496710875578059, 0.6805679103740427, 0.500...
## 2      0.044444  [0.5496710875578059, 0.6805679103740427, 0.500...
## 3      0.066667  [0.5496710875578059, 0.6805679103740427, 0.500...
## 4      0.088889  [0.5496710875578059, 0.6805679103740427, 0.500...
## ..          ...                                                ...
## 95     2.111111  [0.3046546135682859, 0.3626276356362568, 0.191...
## 96     2.133333  [0.2998496943347488, 0.35411026477928204, 0.18...
## 97     2.155556  [0.29626758731408676, 0.34645956641174064, 0.1...
## 98     2.177778  [0.2939082925063055, 0.3396755405336282, 0.182...
## 99     2.200000  [0.29277214247542543, 0.33375857421410476, 0.1...
## 
## [100 rows x 2 columns]

α
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Using CV to Select the Tuning Parameter
Return the optimal  using LassoCV

fit_info = np.array(list(zip(lasso_mod.alphas_, np.mean(lasso_mod.mse_path_, axis = 1))))

fit_info[fit_info[:,0].argsort()]

## array([[0.        , 0.26832555],
##        [0.02222222, 0.26904464],
##        [0.04444444, 0.27086204],
##        [0.06666667, 0.27377741],
##        [0.08888889, 0.27779157],
##        [0.11111111, 0.28290414],
##        [0.13333333, 0.28911508],
##        [0.15555556, 0.29642441],
##        [0.17777778, 0.30483239],
##        [0.2       , 0.30967893],
##        [0.22222222, 0.31098715],
##        [0.24444444, 0.31159763],
##        [0.26666667, 0.31226415],
##        [0.28888889, 0.31298674],
##        [0.31111111, 0.31376537],
##        [0.33333333, 0.31460007],
##        [0.35555556, 0.31549081],
##        [0.37777778, 0.31643761],
##        [0.4       , 0.31744046],
##        [0.42222222, 0.31849937],
##        [0.44444444, 0.31961433],
##        [0.46666667, 0.32078535],
## [0 48888889 0 32201242]

α
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Using CV to Select the Tuning Parameter
Now fit using that optimal 

lasso_best = linear_model.Lasso(lasso_mod.alpha_) #warning thrown since we are using 0, but can ignore
lasso_best.fit(bike_data[["year", "log_km_driven"]].values, bike_data["log_selling_price"].values)

print(lasso_best.intercept_,lasso_best.coef_)

## -148.7932910778814 [ 0.0803366  -0.22686129]

α
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So Do We Just Need CV?
Sometimes!

If you are only considering one type of model, you can use just a training/test set or k-
fold CV to select the best version of that model

When you have multiple types of models to choose from, usually use both!

When we use the test set too much, we may have 'data leakage'
Essentially we end up training our models to the test set by using it too much
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Training/Validation/Test or CV/Test
Instead, we sometimes split into a training, validation, and test set
CV can be used to replace the validation set!
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Training/Validation/Test or CV/Test
Instead, we sometimes split into a training, validation, and test set
CV can be used to replace the validation set!

Compare only the best model from each model type on the test set
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Recap
LASSO is similar to an MLR model but shrinks coefficients and may set some to 0

Tuning parameter must be chosen (usually by CV)

Training/Test split gives us a way to validate our model's performance

CV can be used on the training set to select tuning parameters
Helps determine the 'best' model for a class of models

With many competing model types, determine the best from each type check
performance on the test set
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