The Role of Statistics in Big Data

Justin Post

- Understand and account for variability in data
 - Populations & Samples
 - Sampling Distributions and Likelihoods
 - Inferences on the population

Basic Inference Idea

- Statisticians usually consider **populations** and **samples**
- Example:
 - Population all customers at a bank
 - Parameter p = proportion of customers willing to open an additional account
 - Sample Observe 40 *independent* customers
 - \circ Statistic Sample proportion = $\hat{p}=8/40=0.2$
- Question: Bank makes money if the population proportion is greater than 0.15. Can we conclude that?
- Answer: ?? Is observing $\hat{p}=8/40=0.2$ reasonable if p=0.15 is the true proportion?

By simulating this experiment many times, we can understand the sampling distribution of \hat{p}

- Assumptions:
 - $\circ p = 0.15$
 - $\circ \stackrel{-}{n}=40$
 - Independent customers

```
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt
```

• Where does our value fall in the realm of all possible values?

```
np.random.seed(5)
stats.binom.rvs(n = 40, p = 0.15, size = 1)

## array([4], dtype=int64)

stats.binom.rvs(n = 40, p = 0.15, size = 2)

## array([9, 4], dtype=int64)

np.random.seed(5)
stats.binom.rvs(n = 40, p = 0.15, size = 1)/40

## array([0.1])

stats.binom.rvs(n = 40, p = 0.15, size = 2)/40

## array([0.225, 0.1])
```

```
proportion_draws = stats.binom.rvs(n = 40, p = 0.15, size = 100000)/40
plt.figure(figsize = (12, 7))
plt.hist(proportion_draws, bins = [x/40 for x in range(0, 21)])
plt.axvline(x = 8/40, c = "Red")
plt.text(
    x = 0.3,
    y = 12500,
    s = "Probability of seeing 0.2 or \n larger is " + str(round(np.mean(proportion_draws >= 0.2), 4)))
plt.xlabel("Sample Proportions")
plt.ylabel("# of Occurrences")
plt.title("Sampling Distribution of p-hat for n = 40 and p = 0.15")
plt.show()
plt.close()
```


Hypothesis Testing

- Logic above is the idea of a hypothesis test
- Assume something about the population
 - Collect data around a quantity of interest
 - Estimate the quantity
 - Use probability to quantify uncertainty in estimate
- If result unlikely to be seen under assumptions, reject assumption

n=all or n=1

- Sometimes we can record every user action... don't we have everything?
 - Is there any variability to consider?
 - ∘ Is our sample size the population size? n = all

n=all or n=1

- Can now consider **user-level** (or observational unit level) modeling!
 - Example modeling user intention on social media networks to detect depression

- Carefully consider data sources and bias
 - Combining data sets
 - Understanding data quality
 - Causal relationships

- Model data
 - Define assumptions, model structure, and relationships
 - Investigate behavior
 - Provide error measurements

Modeling Big Data

- Explaining variable importance (Random forests, Deep learning)
- Understanding how models relate (Trees as MLR models, a framework for penalized regression)
- Updating models with streaming data

$$\tilde{\beta}_b^{(r+1)} = \tilde{\beta}_b^{(r)} + \big\{\tilde{S}_b^{(r)_{\mathrm{T}}}(\tilde{V}_b^{(r)})^{-1}\tilde{S}_b^{(r)}\big\}^{-1}\tilde{S}_b^{(r)_{\mathrm{T}}}(\tilde{V}_b^{(r)})^{-1}\tilde{U}_b^{(r)},$$

where we do not need to access the entire raw dataset except for the observations in the current batch \mathcal{D}_{ib} and the last observation in data batch $\mathcal{D}_{i,b-1}$. Instead, we use

https://academic.oup.com/biomet/article/110/4/841/7048657

• Consider how to be smarter with data

Estimated training compute cost in USD: using price-performance trend

Thinking Critically About Models

- Statistical accuracy and computational cost tradeoff
 - Active Learning which data to acquire (DOE) and causal relationships
 - Coresets a small, weighted subset of the data, that approximates the full dataset
 - Divide and conquer algorithms

- Understand randomness and rare events
- If you have enough data, you'll eventually see weird things just by chance (similar to multiple testing idea in hypothesis testing)

- Understand randomness and rare events
- If you have enough data, you'll eventually see weird things just by chance (similar to multiple testing idea in hypothesis testing)
- Rare Events & Expected Numbers
 - \circ Suppose we have an event that occurs with probability p
 - \circ We run k different **independent** experiments

$$P(\text{At least 1 occurrence}) = 1 - (1 - p)^k$$

• We would expect to see the following number of occurrences of the event

$$E(\# \text{ of occurrences}) = k * p$$

Rare Events Example

• Suppose you have an app that screens phone calls for people

$$P(\text{Detected}|\text{Spam}) = 0.99999$$

$$P(\text{Detected}|\text{Non-spam}) = 0.00002$$

And generally, you know that

$$P(\mathrm{Spam}) = 0.2, P(\mathrm{Non\text{-}spam}) = 0.8$$

Rare Events Example

• Given a call is detected as spam, what is the probability it wasn't a spam call?

$$P(\text{Non-spam}|\text{Detected}) = \frac{P(\text{Detected}|\text{Non-spam})P(\text{Non-spam})}{P(\text{Det}|\text{Non-spam})P(\text{Non-spam}) + P(\text{Det}|\text{Spam})P(\text{Spam})}$$

$$= \frac{0.00002*0.8}{0.00002*0.8+0.99999*0.2} = 0.00008$$

• Our event of interest: Given a call is detected as spam, we were wrong has a tiny probability of happening!

Consider This as a Function of the Number of "Trials"

# of calls flagged as spam	P(At least one mistakenly flagged call)	Expected Number of Mistakes
1	0.00008	0.00008
100	0.007968	0.008
1,000	0.076887	0.08
10,000	0.550685	0.8
100,000	1	8

Recap

Although big data has a lot of info, statisticians help us extract that info in a meaningful way! Some things statisticians do:

- Understand and account for variability in data
- Carefully consider data sources and bias
- Model data
- Consider how to be smarter with data
- Understand randomness and rare events