The Role of Statistics in Big Data
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What Do Statisticians Do?

e Understand and account for variability in data

o Populations & Samples
o Sampling Distributions and Likelihoods
o Inferences on the population
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Basic Inference Idea

e Statisticians usually consider populations and samples
e Example:

o Population - all customers at a bank

o Parameter - p = proportion of customers willing to open an additional account
o Sample - Observe 40 independent customers

o Statistic - Sample proportion =p = 8/40 = 0.2

e Question: Bank makes money if the population proportion is greater than 0.15. Can we
conclude that?

o Answer: ?? Is observing p = 8 /40 = 0.2 reasonable if p = 0.15 is the true proportion?
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Simulating a Sampling Distribution

By simulating this experiment many times, we can understand the sampling distribution of
p

e Assumptions:
op=0.15
on =40
o Independent customers

import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt
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Simulating a Sampling Distribution

o Where does our value fall in the realm of all possible values?

np.random.seed(5)

stats.binom.rvs(n = 40, p = 0.15, size = 1)
## array([4], dtype=int64)

stats.binom.rvs(n = 40, p = 0.15, size = 2)
## array([9, 4], dtype=int64)

np.random.seed(5)

stats.binom.rvs(n = 40, p = 0.15, size = 1)/40
## array([0.1])

stats.binom.rvs(n = 40, p = 0.15, size = 2)/40

## array([0.225, 0.1 1)
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Simulating a Sampling Distribution

proportion_draws = stats.binom.rvs(n = 40, p = 0.15, size = 100000)/40
plt.figure(figsize = (12, 7))

plt.hist(proportion_draws, bins = [x/40 for x in range(0, 21)1)
plt.axvline(x = 8/40, ¢ = "Red")

plt.text(
X = 0.3,
y = 12500,

s = "Probability of seeing 0.2 or \n larger is " + str(round(np.mean(proportion_draws >= 0.2), 4)))
plt.xlabel("Sample Proportions")
plt.ylabel("# of Occurrences")
plt.title("Sampling Distribution of p-hat for n = 40 and p = 0.15")
plt.show()
plt.close()
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Simulating a Sampling Distribution

# of Occurrences

Sampling Distribution of p-hat for n = 40 and p = 0.15
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Hypothesis Testing

e Logic above is the idea of a hypothesis test
e Assume something about the population

o Collect data around a quantity of interest
o Estimate the quantity
o Use probability to quantify uncertainty in estimate

e If result unlikely to be seen under assumptions, reject assumption
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e Sometimes we can record every user action... don't we have everything?

o Is there any variability to consider?
o Is our sample size the population size? n = all
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n =dlorn =1

e Can now consider user-level (or observational unit level) modeling!

o Example modeling user intention on social media networks to detect depression
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https://www.sciencedirect.com/science/article/pii/S0268401219313325
https://www.sciencedirect.com/science/article/pii/S0268401219313325

What Do Statisticians Do?

 Carefully consider data sources and bias 7 strengths RCTs WeaknessS\y

o Combining data sets
o Understanding data quality
o Causal relationships
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What Do Statisticians Do?

e Model data

o Define assumptions, model structure, and relationships

o Investigate behavior
o Provide error measurements
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Modeling Big Data

o Explaining variable importance (Random forests, Deep learning)

e Understanding how models relate (Trees as MLR models, a framework for penalized
regression)

o Updating models with streaming data

S(r+1 A(r s =15y 1am)T /7 (r)\—177(r
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where we do not need to access the entire raw dataset except for the observations in

the current batch D;;, and the last observation in data batch D; ;_;. Instead, we use

https://academic.oup.com/biomet/article/110/4/841/7048657
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What Do Statisticians Do?

e Consider how to be smarter with data

Training cost in USD (log scale, inflation-adjusted)

Estimated training compute cost in USD: using price-performance trend
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ThinRing Critically About Models
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MNIST test accuracy
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o Active Learning - which data to acquire (DOE)
and causal relationships
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What Do Statisticians Do?

e Understand randomness and rare events

e If you have enough data, you'll eventually see weird things just by chance (similar to
multiple testing idea in hypothesis testing)
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What Do Statisticians Do?

e Understand randomness and rare events

e If you have enough data, you'll eventually see weird things just by chance (similar to
multiple testing idea in hypothesis testing)

e Rare Events & Expected Numbers

o Suppose we have an event that occurs with probability p
o We run k different independent experiments

P(At least 1 occurrence) = 1 — (1 — p)*

o We would expect to see the following number of occurrences of the event

E(# of occurrences) = k x p
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Rare Events Example

e Suppose you have an app that screens phone calls for people
P(Detected|Spam) = 0.99999
P(Detected|Non-spam) = 0.00002

And generally, you know that
P(Spam) = 0.2, P(Non-spam) = 0.8
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Rare Events Example

e Given a call is detected as spam, what is the probability it wasn't a spam call?
P(Detected|Non-spam) P(Non-spam)
(Det|Non-spam) P(Non-spam) + P(Det |Spam)P(Spam)

B 0.00002 * 0.8
~0.00002 % 0.8 + 0.99999 % 0.2

P(Non-spam|Detected) = 5

= (0.00008

e Our event of interest: Given a call is detected as spam, we were wrong has a tiny
probability of happening!
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Consider This as a Function of the Number of "Trials

# of calls flagged as
spam
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Recap

Although big data has a lot of info, statisticians help us extract that info in a meaningful way!
Some things statisticians do:

e Understand and account for variability in data
Carefully consider data sources and bias
Model data

Consider how to be smarter with data
Understand randomness and rare events
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