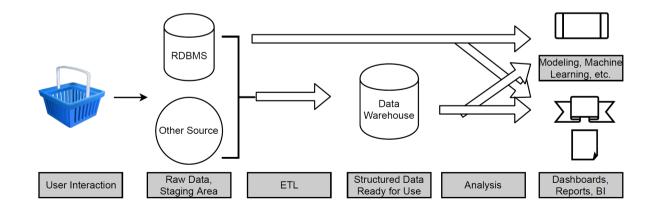
Data Flow, Data Warehouses, and Data Lakes Justin Post

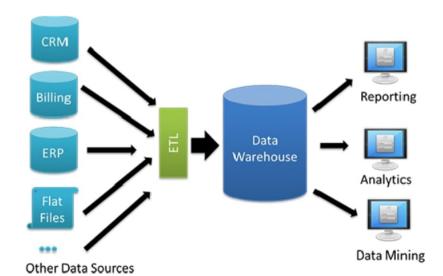
Data Flow, Data Warehouses, and Data Lakes


Justin Post

Databases

- We've discussed the use of a relational database (data, management system, and applications associated)
- The term database is really a bit more general
 - Object oriented databases
 - NoSQL databases
 - Cloud databases
 - Self-driving databases
- Data Warehouse

Data Flow (Non-big data)


- As data comes in, it may be placed directly into a database (say RDBMS)
 - Highly structured schema, normalized data
- Or ETL (Extract, Transform, and Load) may be done and the data stored in a **data warehouse**
 - Structured schema, denormalized data ready for dashboards/analysis/etc.

Data Warehouse

Data warehouses are databases which are designed to:

- Store large amounts of data in a central database and in a standard format.
- Integrate data from many different sources and standardize it, so it's ready for analytics or reporting.
- Maintain historical records, since it can store months or even years of data.
- Keep data secure by storing it in a single location. Access can be granted only to those who need specific data.
- Provide quick, easy access to data to enable faster business decisions.

Databases vs Data Warehouses

Processing Types: OLAP vs OLTP

- Databases (like SQLite) use OnLine Transactional Processing (OLTP) to insert, replace, update, or delete records quickly
 - $\circ~$ Optimized to add, modify, or delete records a lot

Databases vs Data Warehouses

Processing Types: OLAP vs OLTP

- Databases (like SQLite) use OnLine Transactional Processing (OLTP) to insert, replace, update, or delete records quickly
 - Optimized to add, modify, or delete records a lot
- Data Warehouses use OnLine Analytical Processing (OLAP) processing to analyze large amounts of data quickly

• Optimized to exectue a smaller number of complex quieries

Databases vs Data Warehouses

- Databases often have data in a **normalized** format
 - Reduces redundancy and increases consistency as data isn't stored in multiple places
- Data Warehouses usually have **denormalized** that is ready to be analyzed
 - More query efficient, but data may exist in multiple places (and become inconsistent)

 table

 Start date

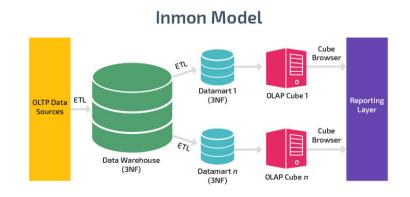
 1
 1/01/201

 1
 1/01/201

 1
 1/01/201

 1
 1/01/201

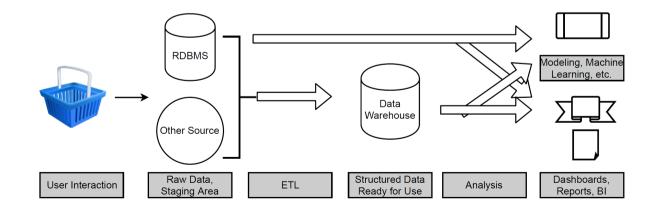
 9
 10/02/201


 9
 10/02/201

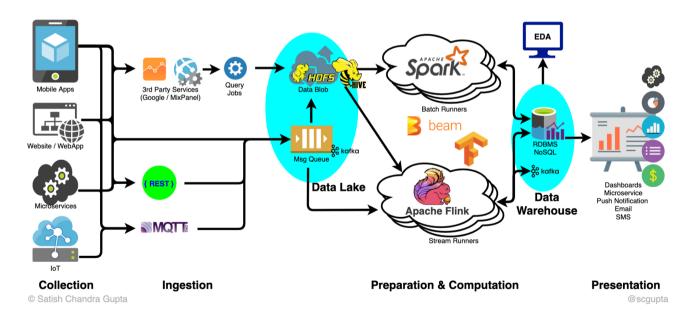
	Transacti	ons
ID	Date	Amount
XWV	2/01/2015	52€
XWV	6/02/2015	21€
xwv	3/03/2015	13€
BBC	17/02/2015	45€
BBC	1/03/2015	75€
VVQ	2/03/2015	
	Customer	data
ID	Age	Start date
XWV	31	1/01/2015
BBC	49	10/02/2015
VVQ	21	15/02/2015

https://bit.ly/3LGTnP0

Data Marts & MDM


- Data Marts are focused versions of a data warehouse for special teams or departments
- You may also hear the term MDM (Master Data Management)
 - Another data source created that incorporates information about all master data sources
 - Provides a single consistent view of all business entities' information (a gold standard for their information)

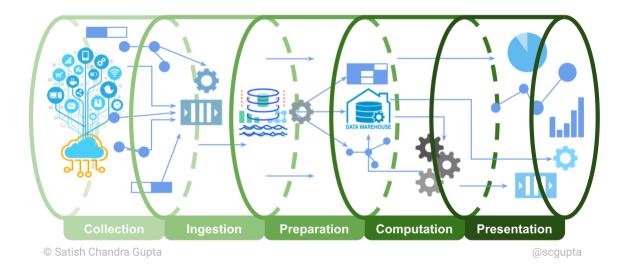
https://bit.ly/3HUQwju


Data Flow (Non-big data)

- As data comes in, it may be placed directly into a database (say RDBMS)
 - Highly structured schema, normalized data
- Or ETL (Extract, Transform, and Load) may be done and the data stored in a **data warehouse**
 - Structured schema, denormalized data ready for dashboards/analysis/etc.

Data Flow (Big Data)

- (Often) All data stored in a stored in a **data lake**
 - Place for raw data to go until it is needed (schema is defined on read)
- ETL (Extract, Transform, and Load) is then done on the data to prepare it for use
 - $\circ\,$ Data may be placed into a database or a data warehouse within the data lake



https://bit.ly/357wbcg

Data Lakes

A central repository to store all data in

- Can handle unstructured, semi-structured, or structured data
- Usually includes raw data and data after ETL
 - $\circ\,$ Raw data kept for long term archival and for data scientists to use

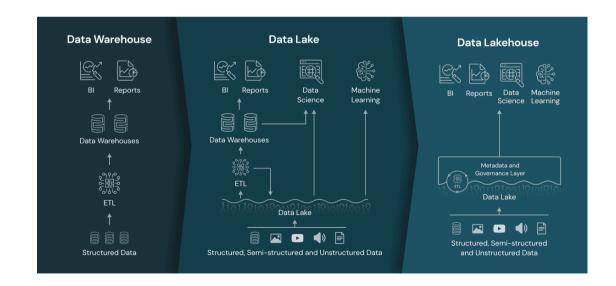
https://bit.ly/357wbcg

Data Sources

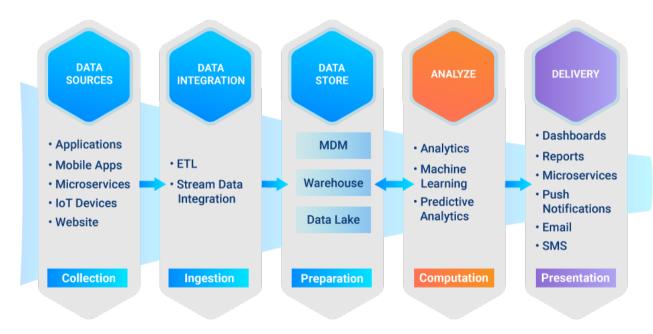
Data ingestion can happen via a batch or streaming process

- **batch**: data is updated in bulk
 - $\circ\,$ Say once each day at 3am
- streaming: data is updated in 'real-time'
 - Jobs run 24/7, waiting for new events to be published

Data Swamps

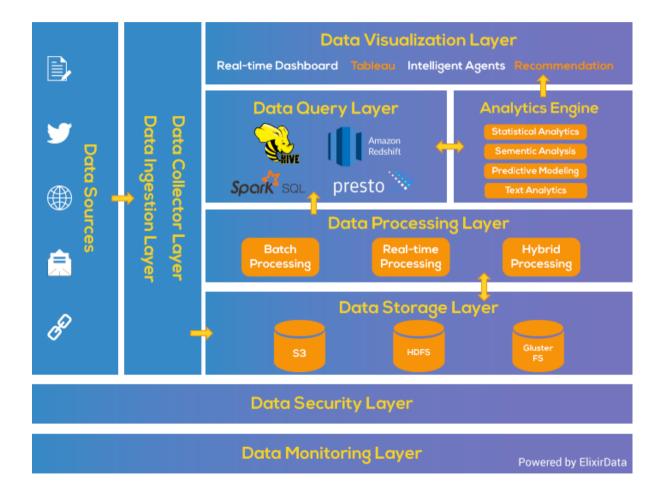

Flexibility of Data Lakes can also cause problems

- **Data Swamp**: a data lake with poor data management
 - Data not well tagged or lacks structure

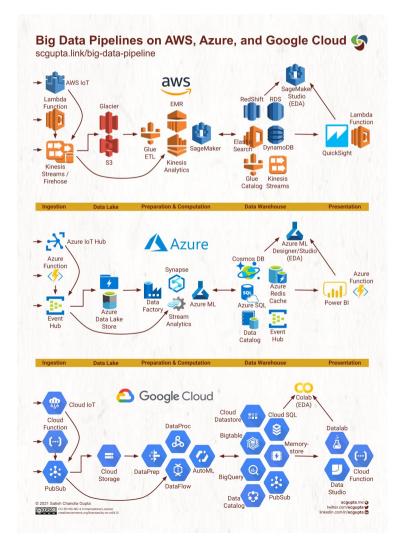

Lake House

- Lake House: an intermediary between the unstructured data lake and the very structured database/data warehouse
- Delta Lake storage technology can power the lake house
 - Guarantees ACID transactions

Big Data Flow


• A lot to manage in the data pipeline!

BIG DATA PIPELINE


https://bit.ly/357wbcg

Another Flow Chart

https://bit.ly/36kiG9E

Companies that Manage the Process

Open Source Tools

- Also a host of open source tools that require management (and you can mix and match)
- Maybe feeling a little less overwhelmed?

Recap

- Important to understand the basic data pipeline (big data and non-big data)
- Data lakes, data warehouses, data marts, MDM, and lake houses
- Lots of competing options
 - $\circ~$ Open source and company managed
 - Cloud managed