
Big Data Storage: HDFS

Justin Post

1 / 31

Digging Deeper

• Hopefully have an idea about the big data pipeline

• Data lakes, data warehouses, databases, etc.

• Next:

◦ How is big data actually stored?

◦ How to we access the big data?

2 / 31

Big Data Storage

• Commonly used data storage systems

◦ Hadoop Distributed File System (HDFS)
◦ Amazon's Simple Storage Service (S3)
◦ Google's Cloud Storage (GCS)
◦ Azure's Blob Storage

• Most of these systems are for HDFS compliant as that was the major method for a long
time

3 / 31

Hadoop

Hadoop is a framework for efficiently storing and processing large datasets

• Allows for clustering of multiple computers to analyze datasets in parallel

4 / 31

Hadoop

Hadoop is a framework for efficiently storing and processing large datasets

• Allows for clustering of multiple comptuers to analyze datasets in parallel

The base Apache Hadoop framework is composed of the following modules:

• Hadoop Distributed File System (HDFS) – a distributed file-system that stores data on
across machines

• Hadoop YARN – a platform responsible for managing computing resources in clusters
and using them for scheduling users' applications

• Hadoop MapReduce – an implementation of the MapReduce programming model for
large-scale data processing

• Hadoop Common – contains libraries and utilities needed by other Hadoop modules

5 / 31

https://hadoop.apache.org/
https://hadoop.apache.org/

HDFS

File system - system that peforms file management (organization, retrieval, naming, etc.)

Distributed file system - file system where the storage devices are physically dispersed
(multiple machines for instance)

6 / 31

HDFS

File system - system that peforms file management (organization, retrieval, naming, etc.)

Distributed file system - file system where the storage devices are physically dispersed
(multiple machines for instance)

• An HDFS instance may consist of hundreds or thousands of server machines (a cluster)
• HDFS stores the data in blocks (say 128 MB chunks)
• Data stored in multiple places for fault tolerance
• Works well for computations that can be split up, run in parallel, and combined

7 / 31

HDFS Architecture

• A Namenode holds all of the information about where the data is stored
• Each node in the cluster usually has a DataNode that manage storage for the node's data

https://hadoop.apache.org/docs/r3.3.1/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

8 / 31

HDFS Data Replication

Data is split into blocks and stored in multiple places

• replication factor determines how many copies are made

https://hadoop.apache.org/docs/r3.3.1/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

9 / 31

HeartBeat and Balancing

HeartBeat - signal sent from datanode back to namenode

• Namenode sees no signal, datanode considered dead

Balancing - when datanodes fail, data may be under-replicated

• Namenode will send signals to replicate and balance data replication

10 / 31

Hadoop YARN - Yet Another Resource Negotiator

Hadoop YARN – a platform responsible for managing computing resources in clusters and
using them for scheduling users' applications

• Client submits jobs
• Resource manager runs in the background to assign and manage resources to complete

the job

https://hadoop.apache.org/docs/r3.3.1/hadoop-yarn/hadoop-yarn-site/YARN.html
11 / 31

Hadoop MapReduce

MapReduce is a programming paradigm that enables massive scalability across hundreds or
thousands of servers in a Hadoop cluster

• Leverages Parallel Computing

12 / 31

https://www.ibm.com/topics/mapreduce#:~:text=MapReduce%20is%20a%20programming%20paradigm,tasks%20that%20Hadoop%20programs%20perform.
https://www.ibm.com/topics/mapreduce#:~:text=MapReduce%20is%20a%20programming%20paradigm,tasks%20that%20Hadoop%20programs%20perform.

Hadoop MapReduce

MapReduce is a programming paradigm that enables massive scalability across hundreds or
thousands of servers in a Hadoop cluster

• Leverages Parallel Computing

◦ Take computations that can be done independently
◦ Run computation simultaneously on

▪ different processor cores
▪ across many connected computers (i.e on a cluster)

◦ Combine results

13 / 31

https://www.ibm.com/topics/mapreduce#:~:text=MapReduce%20is%20a%20programming%20paradigm,tasks%20that%20Hadoop%20programs%20perform.
https://www.ibm.com/topics/mapreduce#:~:text=MapReduce%20is%20a%20programming%20paradigm,tasks%20that%20Hadoop%20programs%20perform.

Parallel Computing Idea

https://computing.llnl.gov/tutorials/parallel_comp/ 14 / 31

Hadoop MapReduce

MapReduce is a programming paradigm that enables massive scalability across hundreds or
thousands of servers in a Hadoop cluster

Basic MapReduce idea:

• Consider different chunks of data to be analyzed
• Use a map function to turn each chunk into zero or more key-value pairs
• Collect together all pairs with the same keys
• Reduce each collection of grouped values to produce an output for the corresponding

key

15 / 31

https://www.ibm.com/topics/mapreduce#:~:text=MapReduce%20is%20a%20programming%20paradigm,tasks%20that%20Hadoop%20programs%20perform.
https://www.ibm.com/topics/mapreduce#:~:text=MapReduce%20is%20a%20programming%20paradigm,tasks%20that%20Hadoop%20programs%20perform.

MapReduce Example

We've already kind of done this with our counting of words from a book homework!

• Plan for a text document:

◦ create a dictionary with words used as the keys and counts as values
◦ This is the map part

• Use this map function across multiple text documents in parallel

◦ Combine the resulting dictionaries by summing counts across the words
◦ This is the reduce part

16 / 31

MapReduce Example

17 / 31

MapReduce Example - Splitting up Oliver Twist

iimmppoorrtt string
ddeeff ffiinndd__cchhaapp(lines, string):
 chap_start = lines.find(string)
 chap_end = lines.find(string, chap_start + 1)

iiff chap_end == -1:
 chap_end = lines.find("End of the Project Gutenberg EBook")

rreettuurrnn([chap_start, chap_end])

ddeeff rreemmoovvee__cchhaarr(lines):
#replace punctuation
ffoorr symbol iinn string.punctuation:

 lines = lines.replace(symbol, "")
 lines = lines.replace("\n", " ")

rreettuurrnn(lines)

18 / 31

MapReduce Example - Splitting up Oliver Twist

ddeeff ssaavvee__cchhaapp(lines, chap = None):
iiff chap == NNoonnee:

 start_end = find_chap(lines, "CHAPTER I")
 chap = 1

eellssee:
 start_end = find_chap(lines, "CHAPTER")

#get the chapter and turn it to lower case
 chap_text = lines[start_end[0]:start_end[1]].lower()

#remove punctuation
 chap_text = remove_char(chap_text)

wwiitthh open('dickens/chap' + str(chap) + '.txt', 'w') aass w:
 w.write(chap_text)
 chap += 1

iiff lines[(start_end[1] + 1):].find("CHAPTER") == -1:
rreettuurrnn

eellssee:
 save_chap(lines[start_end[1]:], chap = chap)

#read in the book as a string
wwiitthh open('dickens/charles-dickens-oliver-twist.txt', 'r') aass f:
 my_lines = f.read()
save_chap(my_lines)

19 / 31

MapReduce Example - Counting Words

Now we can take in one of the chapters and count the words (our mapping function)

ddeeff mmaapp__wwoorrddss(chap):
 word_count_dictionary = {}
 chap_split = chap.split(" ")

ffoorr word iinn chap_split:
iiff word iinn word_count_dictionary:

 word_count_dictionary[word] += 1
eellssee:

 word_count_dictionary[word] = 1
rreettuurrnn word_count_dictionary

wwiitthh open('dickens/chap1.txt', 'r') aass f:
 my_chap = f.read()

counted = map_words(my_chap)
ffoorr vals iinn list(counted.items())[:4]:
 print(vals)

('chapter', 2)
('i', 7)
('', 40)
('treats', 1)

20 / 31

MapReduce Example - Counting Words

• We can construct an iterable with all the chapters and map our function to each chapter
• This could be parallelized across the chapters yielding 53 dictionaries

my_chap = []
ffoorr i iinn range(1, 54):

wwiitthh open('dickens/chap' + str(i) + '.txt', 'r') aass f:
 my_chap.append(f.read())

mapped = list(map(map_words, my_chap))
ffoorr key, value iinn mapped[0].items():
 print(key, ":", value)

chapter : 2
i : 7
: 40
treats : 1
of : 35
the : 75
place : 2
where : 4
oliver : 9
twist : 3
was : 17
born : 3
and : 35
circumstances : 1
attending : 1

21 / 31

MapReduce Example - Counting Words

• Now we would need a reducer function
◦ Takes in the dictionaries
◦ Combines their counts for each word

ddeeff wwoorrdd__rreedduuccee(dict1, dict2):
 combined = {}

ffoorr key iinn dict1.keys():
iiff key iinn dict2:

 combined[key] = dict1[key] + dict2[key]
eellssee:

 combined[key] = dict1[key]
ffoorr key iinn dict2.keys():

iiff key nnoott iinn dict1.keys():
 combined[key] = dict2[key]

rreettuurrnn combined

22 / 31

MapReduce Example - Counting Words

• Now we would need a reducer function
◦ Takes in the dictionaries
◦ Combines their counts for each word

wwiitthh open('dickens/chap1.txt', 'r') aass f:
 my_chap = f.read()
counted1 = map_words(my_chap)

wwiitthh open('dickens/chap2.txt', 'r') aass f:
 my_chap = f.read()
counted2 = map_words(my_chap)

temp = word_reduce(counted1, counted2)
ffoorr key, value iinn temp.items():
 print(key, ":", value)

chapter : 3
i : 39
: 214
treats : 2
of : 148
the : 332
place : 4
where : 10
oliver : 47
twist : 13
was : 95

23 / 31

MapReduce Example - Counting Words

We can run this function across all the 53 chapters using functools.reduce()!

• Recallreduce() takes in a function of two variables and an iterable, applies the function
repetitively over the iterable, and returns the result

iimmppoorrtt functools
functools.reduce(llaammbbddaa x, y: x + y, range(1,11)) # sum first 10 numbers

55

24 / 31

MapReduce Example - Counting Words

We can run this function across all the 53 chapters using functools.reduce()!

• Next we use our word_reduce() function with functools.reduce() to add up across all the
chapters!

final = functools.reduce(word_reduce, mapped)
ffoorr key, val iinn list(final.items())[:10]:
 print(key, ":", val)

chapter : 59
i : 1604
: 7654
treats : 4
of : 3686
the : 9272
place : 111
where : 178
oliver : 727
twist : 54

25 / 31

Data Partitioning and Organization

How you save your data is important!

• From an efficiency perspective you want to make sure the nodes in your cluster have the
data they need close to them rather than constantly having to shuffle data back and forth

◦ If interested in chapter specific things, would want to try to store data split by
chapter

• If you had a big data set you know you want to query by state, smart to store teh data
partitioned by state

26 / 31

Hadoop

Hadoop is a framework for efficiently storing and processing large datasets

• Allows for clustering of multiple comptuers to analyze datasets in parallel

The base Apache Hadoop framework is composed of the following modules:

• Hadoop Distributed File System (HDFS) – a distributed file-system that stores data on
across machines

• Hadoop YARN – a platform responsible for managing computing resources in clusters
and using them for scheduling users' applications

• Hadoop MapReduce – an implementation of the MapReduce programming model for
large-scale data processing

• Hadoop Common – contains libraries and utilities needed by other Hadoop modules

27 / 31

https://hadoop.apache.org/
https://hadoop.apache.org/

Hadoop Limitations

• HDFS usually requires a decent amount of 'on-prem' infrastructure and support

• Difficulties with scalability

◦ Horizontal scaling: adding more machines or larger disk spaces
◦ Vertical scaling: adding additional computational power (CPU, RAM)

https://bit.ly/3vjyHXJ 28 / 31

Cloud Storage

• Commonly used data storage systems

◦ Hadoop Distributed File System (HDFS)
◦ Amazon's Simple Storage Service (S3)
◦ Google's Cloud Storage (GCS)
◦ Azure's Blob Storage

• Many companies are moving to cloud storage for big data

◦ S3, GCS, and Blob storage use object storage instead of a distributed file system
◦ Object storage includes the data, metadata, and a unique identifier

29 / 31

Cloud Storage

• Commonly used data storage systems

◦ Hadoop Distributed File System (HDFS)
◦ Amazon's Simple Storage Service (S3)
◦ Google's Cloud Storage (GCS)
◦ Azure's Blob Storage

• Many companies are moving to cloud storage for big data

◦ S3, GCS, and Blob storage use object storage instead of a distributed file system
◦ Object storage includes the data, metadata, and a unique identifier

• You can still use a Hadoop MapReduce job using the cloud storage options though!

◦ Drawback, it tends to be a bit slower
◦ Bonus, cost is often cheaper overall

30 / 31

Recap

• Commonly used data storage systems

◦ Hadoop Distributed File System (HDFS)
◦ Amazon's Simple Storage Service (S3)
◦ Google's Cloud Storage (GCS)
◦ Azure's Blob Storage

• HDFS, Hadoop YARN, MapReduce, and Hadoop Common

31 / 31

