Loss Functions & Model Performance

Justin Post

• Loss functions are the function that we use to **fit** or **train** our model

- Loss functions are the function that we use to **fit** or **train** our model
- Ex: MLR with minimizing the sum of squared errors
 - Response: *y* = brozek score
 - Predictors: x_1 = age, x_2 = height, ...

$$\min_{eta's}\sum_{i=1}^n(y_i-(eta_0+eta_1x_{1i}+\ldots+eta_px_{pi}))^2$$

- Loss functions are the function that we use to **fit** or **train** our model
- Ex: MLR with minimizing the sum of squared errors plus a penalty
 - Response: *y* = brozek score
 - Predictors: x_1 = age, x_2 = height, ...

$$\min_{eta's}\sum_{i=1}^n(y_i-(eta_0+eta_1x_{1i}+\ldots+eta_px_{pi}))^2+lpha\sum_{j=1}^p|eta_j|$$

- Loss functions are the function that we use to **fit** or **train** our model
- Ex: MLR with minimizing the mean absolute error
 - Response: *y* = brozek score
 - Predictors: x_1 = age, x_2 = height, ...

$$\min_{eta's}\sum_{i=1}^n |y_i-(eta_0+eta_1x_{1i}+\ldots+eta_px_{pi})|$$

- Loss functions are the function that we use to **fit** or **train** our model
- Ex: Logistic Regression with (negative) binary cross entropy
 - Response: *y* = Potability (1 or 0)
 - Predictors: x_1 = Hardness, x_2 = Chloramines, ...

$$\min_{eta's} = -\sum_{i=1}^n (y_i log(p(x_1,\ldots,x_n)) + (1-y_i) log(1-p(x_1,\ldots,x_n)))$$

where $p(x_1,\ldots,x_n)=rac{1}{1+e^{-eta_0-eta_1x_{1i}-\ldots-eta_px_{pi}}}$

NC STATE UNIVERSITY

- Loss functions are the function that we use to **fit** or **train** our model
- Ex: Logistic Regression with (negative) binary cross entropy and penalty
 - Response: *y* = Potability (1 or 0)
 - Predictors: x_1 = Hardness, x_2 = Chloramines, ...

$$\min_{eta's} = -\sum_{i=1}^n (y_i log(p(x_1,\ldots,x_n)) + (1-y_i) log(1-p(x_1,\ldots,x_n))) + \lambda \sum_{i=1}^p eta_j^2$$

where $p(x_1,\ldots,x_n)=rac{1}{1+e^{-eta_0-eta_1x_{1i}-\ldots-eta_px_{pi}}}$

NC STATE UNIVERSITY

- Model metrics are used to determine the quality of the predictions
- Pretty much any loss function can also act as a metric!
 - $\circ~$ Often choose to use the same loss function used as the metric

- Model metrics are used to determine the quality of the predictions
- Pretty much any loss function can also act as a metric!
 - Often choose to use the same loss function used as the metric
- Ex:
 - Fit 'usual' least squares regression (minimize sum of squared errors)
 - Determine quality with RMSE or mean absolute error (MAE)

- Model metrics are used to determine the quality of the predictions
- Pretty much any loss function can also act as a metric!
 - Often choose to use the same loss function used as the metric
- Ex:
 - Fit (MLR) LASSO model (minimize sum of squared errors subject to L1 penalty)
 Determine quality with DMSE or MAE
 - $\circ~$ Determine quality with RMSE or MAE ~

- Model metrics are used to determine the quality of the predictions
- Pretty much any loss function can also act as a metric!
 - Often choose to use the same loss function used as the metric
- Ex:
 - Fit Logistic Regression model (minimize (negative) binary cross entropy)
 - Determine quality with (negative) binary cross entropy (neg_log_loss) or accuracy

Other Commonly Used Model Metrics

For a categorical response, many rely on:

- "Wolf" is a **positive class**.
- "No wolf" is a negative class.

We can summarize our "wolf-prediction" model using a 2x2 confusion matrix that depicts all four possible outcomes:

True Positive (TP):	False Positive (FP):
Reality: A wolf threatened.	Reality: No wolf threatened.
Shepherd said: "Wolf."	Shepherd said: "Wolf."
• Outcome: Shepherd is a hero.	• Outcome: Villagers are angry at shepherd for waking them up.
False Negative (FN):	True Negative (TN):
False Negative (FN): • Reality: A wolf threatened.	True Negative (TN): Reality: No wolf threatened.
False Negative (FN): • Reality: A wolf threatened. • Shepherd said: "No wolf."	True Negative (TN): Reality: No wolf threatened. Shepherd said: "No wolf."

NC STATE UNIVERSITY

From google's ML crash course

Other Commonly Used Model Metrics

For a categorical response:

- Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$
- Precision = $\frac{TP}{TP+FP}$
- Recall (or True positive rate, TPR) = $\frac{TP}{TP+FN}$
- False Positive Rate (FPR) = $\frac{FP}{FP+TN}$

Other Commonly Used Model Metrics

For a categorical response:

- Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$
- Precision = $\frac{TP}{TP+FP}$
- Recall (or True positive rate) = $\frac{TP}{TP+FN}$
- False Positive Rate (FPR) = $\frac{FP}{FP+TN}$

Built off of these ideas

- Receiver Operating Characteristic (ROC) curve
- Plots FPR vs TPR at different classification thresholds
- Area under ROC curve often used!

NC STATE UNIVERSITY

Note: Model Selection Without Training/Test

- For a numeric response, these are just calculated on the training data
 - \circ AIC
 - \circ AICc
 - BIC
 - Mallow's Cp
 - Adjusted R-squared
- Can be used to select a model without a training/test split

Recap

- Loss functions are used during model fitting
- Model metrics are used to evaluate a model
 - Can be the same!
 - Often still call it a loss function when using as a metric