k Nearest Neighbors

Justin Post

Recap

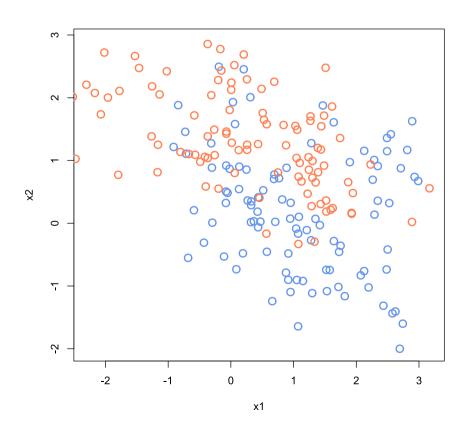
- MLR, Penalized MLR, & Regression Trees
 - Commonly used model with a numeric response
- Logistic Regression, Penalized Logistic Regression, & Classification Trees
 - Commonly used model with a binary response
- MLR & Logistic regression are more structured (linear)
- Trees easier to read but more variable (non-linear)
- Ensemble trees can greatly improve predictions in some cases (but you lose interpretability)

Recap

- MLR, Penalized MLR, & Regression Trees
 - Commonly used model with a numeric response
- Logistic Regression, Penalized Logistic Regression, & Classification Trees
 - Commonly used model with a binary response
- MLR & Logistic regression are more structured (linear)
- Trees easier to read but more variable (non-linear)
- Ensemble trees can greatly improve predictions in some cases (but you lose interpretability)

Now: k Nearest Neighbors (kNN) - another non-linear method for prediction/classification

Suppose you have two **numeric** predictors and a categorical response (red or blue)



Want to predict class membership (red or blue) based on (x1, x2) combination kNN algorithm:

- Use "closest" k observations from training set to predict class
- ullet Often Euclidean distance used: $ob_1=(x_{11},x_{21})$, $ob_2=(x_{12},x_{22})$ then $d(ob_1,ob_2)=\sqrt{(x_{11}-x_{12})^2+(x_{21}-x_{22})^2}$)

Want to predict class membership (red or blue) based on (x1, x2) combination kNN algorithm:

- Use "closest" k observations from training set to predict class
- ullet Often Euclidean distance used: $ob_1=(x_{11},x_{21}), ob_2=(x_{12},x_{22})$ then $d(ob_1,ob_2)=\sqrt{(x_{11}-x_{12})^2+(x_{21}-x_{22})^2}$)
- Find estimates:

 $P(red|x1,x2) = ext{proportion of k closest values that are red}$ $P(blue|x1,x2) = ext{proportion of k closest values that are blue}$

Want to predict class membership (red or blue) based on (x1, x2) combination kNN algorithm:

- Use "closest" k observations from training set to predict class
- $oldsymbol{o}$ Often Euclidean distance used: $ob_1=(x_{11},x_{21}), ob_2=(x_{12},x_{22})$ then $d(ob_1,ob_2)=\sqrt{(x_{11}-x_{12})^2+(x_{21}-x_{22})^2}$)
- Find estimates:

P(red|x1,x2)= proportion of k closest values that are red P(blue|x1,x2)= proportion of k closest values that are blue

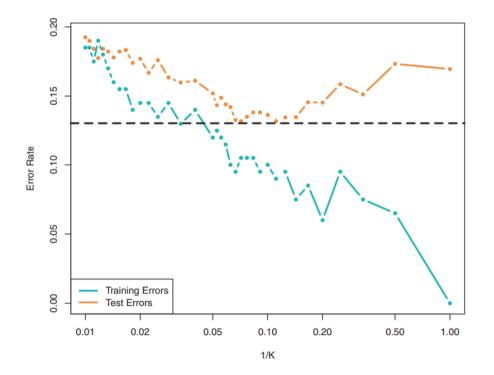
- Classify (predict) to class with highest probability
- App here: https://shiny.stat.ncsu.edu/jbpost2/knn/

$\mathsf{kNN}\,k$ value

- Small k implies flexible (possibly overfit, higher variance)
 - Training error will be small, may not extend to testing error
- Large k implies more rigid (possibly underfit, lower variance)

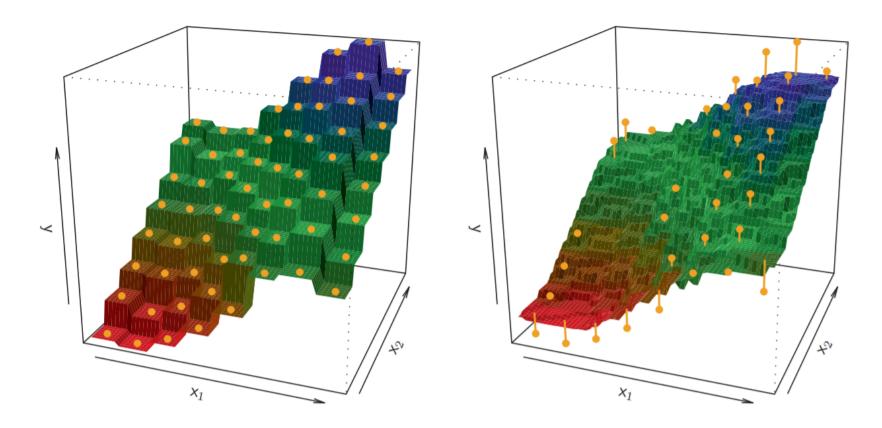
kNN k value

- Small k implies flexible (possibly overfit, higher variance)
 - Training error will be small, may not extend to testing error
- Large k implies more rigid (possibly underfit, lower variance)



kNN for Regression

- Same idea!
 - \circ Use average of responses of "closest" k observations in training set as prediction
 - Closest again often Euclidean distance
- Note: Should usually standardize predictors (center/scale) any time you use 'distance' as scale becomes important



From: Introduction to Statistical Learning k = 1 on the left, k = 9 on the right

More than Two Predictors

• Must all be numeric unless you develop or use a 'distance' measure that is appropriate for categorical data

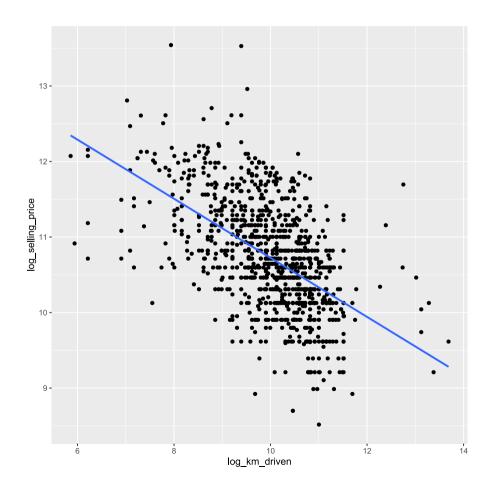
More than Two Predictors

- Must all be numeric unless you develop or use a 'distance' measure that is appropriate for categorical data
- For all numeric data, Euclidean distance extends easily and is the default!

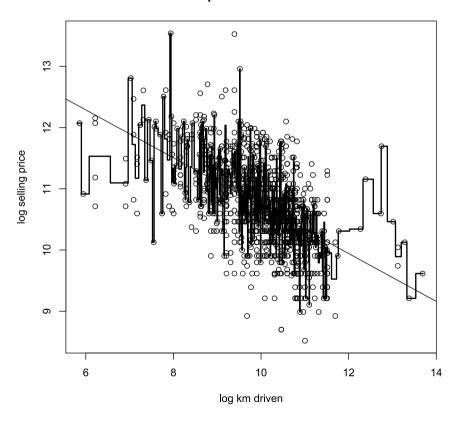
$$ob_1=(x_{11},x_{21},\ldots,x_{p1}), ob_2=(x_{12},x_{22},\ldots,x_{p2})$$

$$D(ob_1,ob_2) = \sqrt{\sum_{i=1}^p (x_{i1} - x_{i2})^2}$$

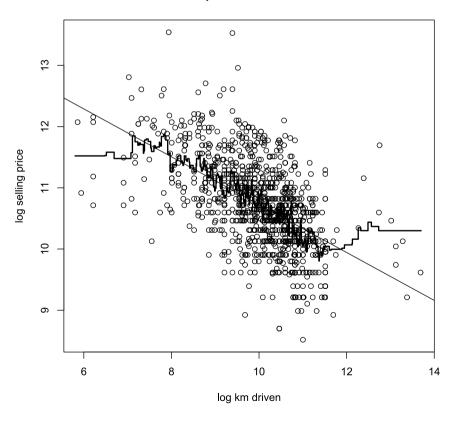
• Consider bike_data we've used and ex_showroom_price as a predictor of selling_price



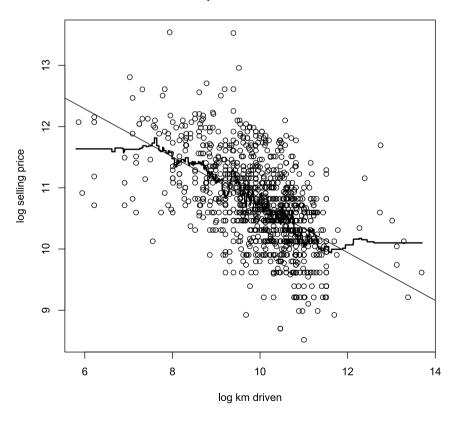
• SLR vs kNN with k=1



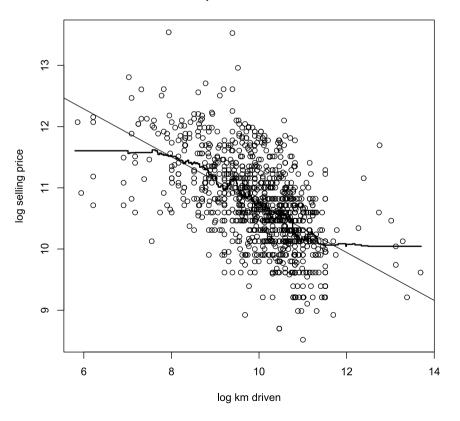
• SLR vs kNN with k=10



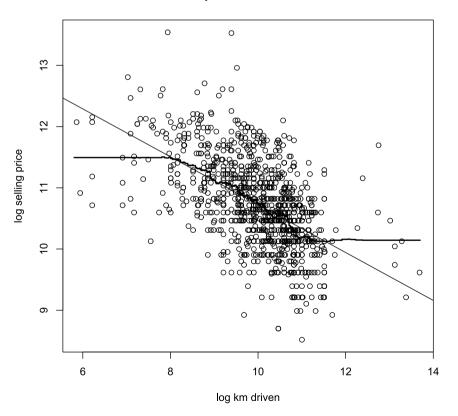
ullet SLR vs kNN with k=20



• SLR vs kNN with k=50



• SLR vs kNN with k=100



- Same process as other models
 - Create an instance of the model
 - Use the .fit() method
 - Predict with .predict()
- Of course we likely want to use CV
 - Use GridSearchCV()

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
bike_data = pd.read_csv("data/bikeDetails.csv")
#create response and new predictor
bike_data['log_selling_price'] = np.log(bike_data['selling_price'])
bike_data['log_km_driven'] = np.log(bike_data['km_driven'])
```

• Fit the model with k=3

• Fit the model with k=3

• Compare predictions with the Bagged tree model

• Fit the model with k=3

• Compare predictions with the Bagged tree model

GridSearchCV

- No 'built-in' CV function
- Use GridSearchCV()

GridSearchCV

- No 'built-in' CV function
- Use GridSearchCV()

GridSearchCV

- No 'built-in' CV function
- Use GridSearchCV()

Recap

- kNN uses k closest observations from the training set for prediction
- Very flexible to not flexible!
- Can be used for both regression and classification problems
 - KNeighborsRegressor() or KNeighborsClassifier()
- CV easily done with GridSearchCV()