
k Nearest Neighbors
Justin Post

1 / 28

Recap
MLR, Penalized MLR, & Regression Trees

Commonly used model with a numeric response

Logistic Regression, Penalized Logistic Regression, & Classification Trees

Commonly used model with a binary response

MLR & Logistic regression are more structured (linear)

Trees easier to read but more variable (non-linear)

Ensemble trees can greatly improve predictions in some cases (but you lose
interpretability)

2 / 28

Recap
MLR, Penalized MLR, & Regression Trees

Commonly used model with a numeric response

Logistic Regression, Penalized Logistic Regression, & Classification Trees

Commonly used model with a binary response

MLR & Logistic regression are more structured (linear)

Trees easier to read but more variable (non-linear)

Ensemble trees can greatly improve predictions in some cases (but you lose
interpretability)

Now: k Nearest Neighbors (kNN) - another non-linear method for prediction/classification

3 / 28

kNN (Classification)
Suppose you have two numeric predictors and a categorical response (red or blue)

4 / 28

kNN (Classification)
Want to predict class membership (red or blue) based on (x1, x2) combination

kNN algorithm:

Use "closest" k observations from training set to predict class

Often Euclidean distance used: , then

)

ob1 = (x11,x21) ob2 = (x12,x22)

d(ob1, ob2) = √(x11 − x12)2 + (x21 − x22)2

5 / 28

kNN (Classification)
Want to predict class membership (red or blue) based on (x1, x2) combination

kNN algorithm:

Use "closest" k observations from training set to predict class

Often Euclidean distance used: , then

)

Find estimates:

ob1 = (x11,x21) ob2 = (x12,x22)

d(ob1, ob2) = √(x11 − x12)2 + (x21 − x22)2

P(red|x1,x2) = proportion of k closest values that are red

P(blue|x1,x2) = proportion of k closest values that are blue

6 / 28

kNN (Classification)
Want to predict class membership (red or blue) based on (x1, x2) combination

kNN algorithm:

Use "closest" k observations from training set to predict class

Often Euclidean distance used: , then

)

Find estimates:

Classify (predict) to class with highest probability

App here: https://shiny.stat.ncsu.edu/jbpost2/knn/

ob1 = (x11,x21) ob2 = (x12,x22)

d(ob1, ob2) = √(x11 − x12)2 + (x21 − x22)2

P(red|x1,x2) = proportion of k closest values that are red

P(blue|x1,x2) = proportion of k closest values that are blue

7 / 28

https://shiny.stat.ncsu.edu/jbpost2/knn/
https://shiny.stat.ncsu.edu/jbpost2/knn/

kNN value
Small implies flexible (possibly overfit, higher variance)

Training error will be small, may not extend to testing error

Large implies more rigid (possibly underfit, lower variance)

k

k

k

8 / 28

kNN value
Small implies flexible (possibly overfit, higher variance)

Training error will be small, may not extend to testing error

Large implies more rigid (possibly underfit, lower variance)

k

k

k

9 / 28

kNN for Regression
Same idea!

Use average of responses of "closest" observations in training set as prediction
Closest again often Euclidean distance

Note: Should usually standardize predictors (center/scale) any time you use 'distance' as
scale becomes important

k

10 / 28

From: Introduction to Statistical Learning
 = 1 on the left, = 9 on the rightk k

11 / 28

More than Two Predictors
Must all be numeric unless you develop or use a 'distance' measure that is appropriate
for categorical data

12 / 28

More than Two Predictors
Must all be numeric unless you develop or use a 'distance' measure that is appropriate
for categorical data

For all numeric data, Euclidean distance extends easily and is the default!

ob1 = (x11,x21, . . . ,xp1), ob2 = (x12,x22, . . . ,xp2)

D(ob1, ob2) =


⎷

p

∑
i=1

(xi1 − xi2)2

13 / 28

Visualize Fit vs SLR
Consider bike_data we've used and ex_showroom_price as a predictor of selling_price

14 / 28

Visualize Fit vs SLR
SLR vs kNN with k = 1

15 / 28

Visualize Fit vs SLR
SLR vs kNN with k = 10

16 / 28

Visualize Fit vs SLR
SLR vs kNN with k = 20

17 / 28

Visualize Fit vs SLR
SLR vs kNN with k = 50

18 / 28

Visualize Fit vs SLR
SLR vs kNN with k = 100

19 / 28

Fitting kNN with sklearn
Same process as other models

Create an instance of the model
Use the .fit() method
Predict with .predict()

Of course we likely want to use CV

Use GridSearchCV()

20 / 28

Fitting kNN with sklearn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
bike_data = pd.read_csv("data/bikeDetails.csv")
#create response and new predictor
bike_data['log_selling_price'] = np.log(bike_data['selling_price'])
bike_data['log_km_driven'] = np.log(bike_data['km_driven'])

21 / 28

Fitting kNN with sklearn
Fit the model with

from sklearn.neighbors import KNeighborsRegressor
neigh = KNeighborsRegressor(n_neighbors = 3)
neigh.fit(bike_data[['log_km_driven', 'year']],
 bike_data['log_selling_price'])

k = 3

22 / 28

Fitting kNN with sklearn
Fit the model with

from sklearn.neighbors import KNeighborsRegressor
neigh = KNeighborsRegressor(n_neighbors = 3)
neigh.fit(bike_data[['log_km_driven', 'year']],
 bike_data['log_selling_price'])

Compare predictions with the Bagged tree model

from sklearn.ensemble import RandomForestRegressor
bag_tree = RandomForestRegressor(max_features = None, n_estimators = 500)
bag_tree.fit(bike_data[['log_km_driven', 'year']],
 bike_data['log_selling_price'])

k = 3

23 / 28

Fitting kNN with sklearn
Fit the model with

from sklearn.neighbors import KNeighborsRegressor
neigh = KNeighborsRegressor(n_neighbors = 3)
neigh.fit(bike_data[['log_km_driven', 'year']],
 bike_data['log_selling_price'])

Compare predictions with the Bagged tree model

from sklearn.ensemble import RandomForestRegressor
bag_tree = RandomForestRegressor(max_features = None, n_estimators = 500)
bag_tree.fit(bike_data[['log_km_driven', 'year']],
 bike_data['log_selling_price'])

log_km_driven year bagged_preds kNN_preds
0 9.5 1990 41952.680319 24986.659549
1 9.5 2015 46689.655309 73986.362230
2 10.6 1990 16216.796741 24986.659549
3 10.6 2015 34235.698665 34552.116150

k = 3

24 / 28

GridSearchCV

No 'built-in' CV function
Use GridSearchCV()

25 / 28

GridSearchCV

No 'built-in' CV function
Use GridSearchCV()

from sklearn.model_selection import GridSearchCV
k_range = list(range(1, 100))
param_grid = dict(n_neighbors=k_range)
 # defining parameter range
grid = GridSearchCV(KNeighborsRegressor(),
 param_grid,
 cv=5,
 scoring='neg_root_mean_squared_error')

26 / 28

GridSearchCV

No 'built-in' CV function
Use GridSearchCV()

from sklearn.model_selection import GridSearchCV
k_range = list(range(1, 100))
param_grid = dict(n_neighbors=k_range)
 # defining parameter range
grid = GridSearchCV(KNeighborsRegressor(),
 param_grid,
 cv=5,
 scoring='neg_root_mean_squared_error')

grid.fit(bike_data[['log_km_driven', 'year']],
 bike_data['log_selling_price'])

print(grid.best_params_)

{'n_neighbors': 49}

27 / 28

Recap
kNN uses k closest observations from the training set for prediction

Very flexible to not flexible!

Can be used for both regression and classification problems

KNeighborsRegressor() or KNeighborsClassifier()

CV easily done with GridSearchCV()

28 / 28

