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Recap
MLR, Penalized MLR, & Regression Trees

Commonly used model with a numeric response

Logistic Regression, Penalized Logistic Regression, & Classification Trees

Commonly used model with a binary response

MLR & Logistic regression are more structured (linear)

Trees easier to read but more variable (non-linear)

Ensemble trees can greatly improve predictions in some cases (but you lose
interpretability)
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Recap
MLR, Penalized MLR, & Regression Trees

Commonly used model with a numeric response

Logistic Regression, Penalized Logistic Regression, & Classification Trees

Commonly used model with a binary response

MLR & Logistic regression are more structured (linear)

Trees easier to read but more variable (non-linear)

Ensemble trees can greatly improve predictions in some cases (but you lose
interpretability)

Now: k Nearest Neighbors (kNN) - another non-linear method for prediction/classification
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kNN (Classification)
Suppose you have two numeric predictors and a categorical response (red or blue)
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kNN (Classification)
Want to predict class membership (red or blue) based on (x1, x2) combination

kNN algorithm:

Use "closest" k observations from training set to predict class

Often Euclidean distance used: ,  then

)

ob1 = (x11,x21) ob2 = (x12,x22)

d(ob1, ob2) = √(x11 − x12)2 + (x21 − x22)2
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kNN (Classification)
Want to predict class membership (red or blue) based on (x1, x2) combination

kNN algorithm:

Use "closest" k observations from training set to predict class

Often Euclidean distance used: ,  then

)

Find estimates:

ob1 = (x11,x21) ob2 = (x12,x22)

d(ob1, ob2) = √(x11 − x12)2 + (x21 − x22)2

P(red|x1,x2) = proportion of k closest values that are red

P(blue|x1,x2) = proportion of k closest values that are blue
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kNN (Classification)
Want to predict class membership (red or blue) based on (x1, x2) combination

kNN algorithm:

Use "closest" k observations from training set to predict class

Often Euclidean distance used: ,  then

)

Find estimates:

Classify (predict) to class with highest probability

App here: https://shiny.stat.ncsu.edu/jbpost2/knn/

ob1 = (x11,x21) ob2 = (x12,x22)

d(ob1, ob2) = √(x11 − x12)2 + (x21 − x22)2

P(red|x1,x2) = proportion of k closest values that are red

P(blue|x1,x2) = proportion of k closest values that are blue
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kNN  value
Small  implies flexible (possibly overfit, higher variance)

Training error will be small, may not extend to testing error

Large  implies more rigid (possibly underfit, lower variance)

k
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kNN for Regression
Same idea!

Use average of responses of "closest"  observations in training set as prediction
Closest again often Euclidean distance

Note: Should usually standardize predictors (center/scale) any time you use 'distance' as
scale becomes important

k
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From: Introduction to Statistical Learning
 = 1 on the left,  = 9 on the rightk k
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More than Two Predictors
Must all be numeric unless you develop or use a 'distance' measure that is appropriate
for categorical data
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More than Two Predictors
Must all be numeric unless you develop or use a 'distance' measure that is appropriate
for categorical data

For all numeric data, Euclidean distance extends easily and is the default!

ob1 = (x11,x21, . . . ,xp1), ob2 = (x12,x22, . . . ,xp2)

D(ob1, ob2) =


⎷

p

∑
i=1

(xi1 − xi2)2
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Visualize Fit vs SLR
Consider bike_data  we've used and ex_showroom_price  as a predictor of selling_price
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Visualize Fit vs SLR
SLR vs kNN with k = 1
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Visualize Fit vs SLR
SLR vs kNN with k = 10
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Visualize Fit vs SLR
SLR vs kNN with k = 20
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Visualize Fit vs SLR
SLR vs kNN with k = 50

18 / 28



Visualize Fit vs SLR
SLR vs kNN with k = 100
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Fitting kNN with sklearn
Same process as other models

Create an instance of the model
Use the .fit()  method
Predict with .predict()

Of course we likely want to use CV

Use GridSearchCV()
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Fitting kNN with sklearn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
bike_data = pd.read_csv("data/bikeDetails.csv")
#create response and new predictor
bike_data['log_selling_price'] = np.log(bike_data['selling_price'])
bike_data['log_km_driven'] = np.log(bike_data['km_driven'])
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Fitting kNN with sklearn
Fit the model with 

from sklearn.neighbors import KNeighborsRegressor
neigh = KNeighborsRegressor(n_neighbors = 3)
neigh.fit(bike_data[['log_km_driven', 'year']], 
             bike_data['log_selling_price'])

k = 3
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Fitting kNN with sklearn
Fit the model with 

from sklearn.neighbors import KNeighborsRegressor
neigh = KNeighborsRegressor(n_neighbors = 3)
neigh.fit(bike_data[['log_km_driven', 'year']], 
             bike_data['log_selling_price'])

Compare predictions with the Bagged tree model

from sklearn.ensemble import RandomForestRegressor
bag_tree = RandomForestRegressor(max_features = None, n_estimators = 500)
bag_tree.fit(bike_data[['log_km_driven', 'year']], 
             bike_data['log_selling_price'])

k = 3
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Fitting kNN with sklearn
Fit the model with 

from sklearn.neighbors import KNeighborsRegressor
neigh = KNeighborsRegressor(n_neighbors = 3)
neigh.fit(bike_data[['log_km_driven', 'year']], 
             bike_data['log_selling_price'])

Compare predictions with the Bagged tree model

from sklearn.ensemble import RandomForestRegressor
bag_tree = RandomForestRegressor(max_features = None, n_estimators = 500)
bag_tree.fit(bike_data[['log_km_driven', 'year']], 
             bike_data['log_selling_price'])

##    log_km_driven  year  bagged_preds     kNN_preds
## 0            9.5  1990  41952.680319  24986.659549
## 1            9.5  2015  46689.655309  73986.362230
## 2           10.6  1990  16216.796741  24986.659549
## 3           10.6  2015  34235.698665  34552.116150

k = 3
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GridSearchCV

No 'built-in' CV function
Use GridSearchCV()
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GridSearchCV

No 'built-in' CV function
Use GridSearchCV()

from sklearn.model_selection import GridSearchCV
k_range = list(range(1, 100))
param_grid = dict(n_neighbors=k_range)
  # defining parameter range
grid = GridSearchCV(KNeighborsRegressor(), 
                    param_grid, 
                    cv=5, 
                    scoring='neg_root_mean_squared_error')
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GridSearchCV

No 'built-in' CV function
Use GridSearchCV()

from sklearn.model_selection import GridSearchCV
k_range = list(range(1, 100))
param_grid = dict(n_neighbors=k_range)
  # defining parameter range
grid = GridSearchCV(KNeighborsRegressor(), 
                    param_grid, 
                    cv=5, 
                    scoring='neg_root_mean_squared_error')

grid.fit(bike_data[['log_km_driven', 'year']], 
             bike_data['log_selling_price'])

print(grid.best_params_)

## {'n_neighbors': 49}
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Recap
kNN uses k closest observations from the training set for prediction

Very flexible to not flexible!

Can be used for both regression and classification problems

KNeighborsRegressor()  or KNeighborsClassifier()

CV easily done with GridSearchCV()

28 / 28


