R Nearest Neighbors

Justin Post

Recap

MLR, Penalized MLR, & Regression Trees

o Commonly used model with a numeric response

Logistic Regression, Penalized Logistic Regression, & Classification Trees

o Commonly used model with a binary response

MLR & Logistic regression are more structured (linear)

Trees easier to read but more variable (non-linear)

Ensemble trees can greatly improve predictions in some cases (but you lose
interpretability)

2 /28

Recap

MLR, Penalized MLR, & Regression Trees

o Commonly used model with a numeric response

Logistic Regression, Penalized Logistic Regression, & Classification Trees

o Commonly used model with a binary response

MLR & Logistic regression are more structured (linear)

Trees easier to read but more variable (non-linear)

Ensemble trees can greatly improve predictions in some cases (but you lose
interpretability)

Now: k Nearest Neighbors (kNN) - another non-linear method for prediction/classification

3/28

kNN (Classification)

Suppose you have two numeric predictors and a categorical response (red or blue)

x2

o
© o
o 8% , o
o
% 0800
o & Qo0
o 5 896 o
OOQDD@)oOBO %%@ O oo
o 0@ 0.0 °& o
0 00 %) o O
o o)
o 0% %% o oo
o 000 q” ©©° g
o80 %O(D
o
o oOO © B ©
@ @ O
0 009 ©
o)
(o) o
o)

x1

4 /28

kNN (Classification)

Want to predict class membership (red or blue) based on (x1, x2) combination
KNN algorithm:
o Use "closest" k observations from training set to predict class

« Often Euclidean distance used: ob; = (x11, T21), 0by = (12, T22) then

d(oby,0b2) = /(x11 — #12)? + (@21 — Z22)?)

5/28

kNN (Classification)

Want to predict class membership (red or blue) based on (x1, x2) combination
KNN algorithm:
o Use "closest" k observations from training set to predict class

« Often Euclidean distance used: ob; = (x11, T21), 0by = (12, T22) then
d(ob1,0by) = +/(z11 — 212)? + (@21 — T22)?)

e Find estimates:

P(red|zl,x2) = proportion of k closest values that are red

P(blue|xzl, x2) = proportion of k closest values that are blue

6/28

kNN (Classification)

Want to predict class membership (red or blue) based on (x1, x2) combination
KNN algorithm:
o Use "closest" k observations from training set to predict class

« Often Euclidean distance used: ob; = (x11, T21), 0by = (12, T22) then
d(ob1,0by) = +/(z11 — 212)? + (@21 — T22)?)

e Find estimates:

P(red|zl,x2) = proportion of k closest values that are red
P(blue|xzl, x2) = proportion of k closest values that are blue

 (lassify (predict) to class with highest probability
e App here: https://shiny.stat.ncsu.edu/jbpost2/knn/

728

https://shiny.stat.ncsu.edu/jbpost2/knn/
https://shiny.stat.ncsu.edu/jbpost2/knn/

RNN £ value

e Small k implies flexible (possibly overfit, higher variance)
o Training error will be small, may not extend to testing error

e Large k implies more rigid (possibly underfit, lower variance)

8/28

RNN £ value

e Small k implies flexible (possibly overfit, higher variance)
o Training error will be small, may not extend to testing error

 Large k implies more rigid (possibly underfit, lower variance)

0.20
|

0.15
|

/
\ \ /o\
e e e e e e e | e P - = - -
L]
L
@ .\
IZch E — . l'.
g (=] . .\
. \./. L]
\ \
L]
[Ts)
o
[S]
—— Training Errors
8. -1 Test Errors
I T T T T I I
0.01 0.02 0.05 0.10 0.20 0.50 1.00

1/K 9/28

RNN for Regression

e Same idea!

o Use average of responses of "closest" k observations in training set as prediction
o Closest again often Euclidean distance

e Note: Should usually standardize predictors (center/scale) any time you use 'distance' as
scale becomes important

10/ 28

From: Introduction to Statistical Learning
k =1 on the left, £ = 9 on the right

11/28

More than Two Predictors

e Must all be numeric unless you develop or use a 'distance’' measure that is appropriate
for categorical data

12 /28

More than Two Predictors

e Must all be numeric unless you develop or use a 'distance’' measure that is appropriate
for categorical data

e For all numeric data, Euclidean distance extends easily and is the default!

obi = (z11,Z21,...,Zp1),0b2 = (T12, T22, ..., Zp2)

i(wil — 213z'2)2
\ i=1

D(Obl, Obg) —

13/ 28

Visualize Fit vs SLR

e Consider bike_data we've used and ex_showroom_price as a predictor of selling_price

log_selling_price

..o(:$ Jo':"o\.

o o o
oo o o0 -.P..m. L]
L] 000 0 o0

6 8 10 12 14
log_km_driven

14/ 28

Visualize Fit vs SLR

e SLRvs kNNwithk =1

kNN predictions vs SLR

€l

¢l

I
Ll

aoud Buies 6o)

ol

14

12

10

log km driven

15/ 28

Visualize Fit vs SLR

e SLR vs kNN with k£ = 10

kNN predictions vs SLR

log selling price

log km driven

16/ 28

Visualize Fit vs SLR

e SLR vs kNN with k£ = 20

kNN predictions vs SLR

log selling price

log km driven

17/ 28

Visualize Fit vs SLR

e SLR vs kNN with k£ = 50

kNN predictions vs SLR

log selling price

log km driven

18 /28

Visualize Fit vs SLR

e SLR vs kNN with £ = 100

kNN predictions vs SLR

13

11
|

log selling price

10

log km driven

19/ 28

Fitting RNN with sklearn

e Same process as other models

o Create an instance of the model
o Use the .fit() method
o Predict with .predict()

e Of course we likely want to use CV

o Use GridSearchCV()

20 /28

Fitting RNN with sklearn

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

bike_data = pd.read_csv("data/bikeDetails.csv")

#create response and new predictor

bike_datal['log_selling_price'] = np.log(bike_data['selling_price'])
bike_datal['log_km_driven'] = np.log(bike_data['km_driven'])

21/28

Fitting RNN with sklearn

e Fit the model with k = 3

from sklearn.neighbors import KNeighborsRegressor

neigh = KNeighborsRegressor(n_neighbors = 3)

neigh.fit(bike_datal['log_km_driven', 'year']],
bike_datal'log_selling_price'])

22 [28

Fitting RNN with sklearn

e Fit the model with k = 3

from sklearn.neighbors import KNeighborsRegressor

neigh = KNeighborsRegressor(n_neighbors = 3)

neigh.fit(bike_datal['log_km_driven', 'year']],
bike_datal'log_selling_price'])

e Compare predictions with the Bagged tree model

from sklearn.ensemble import RandomForestRegressor

bag_tree = RandomForestRegressor(max_features = None, n_estimators = 500)

bag_tree.fit(bike_datal['log_km_driven', 'year']],
bike_data['log_selling_price'])

23 /28

Fitting RNN with sklearn

e Fit the model with k = 3

from sklearn.neighbors import KNeighborsRegressor

neigh = KNeighborsRegressor(n_neighbors = 3)

neigh.fit(bike_datal['log_km_driven', 'year']],
bike_datal'log_selling_price'])

e Compare predictions with the Bagged tree model

from sklearn.ensemble import RandomForestRegressor

bag_tree = RandomForestRegressor(max_features = None, n_estimators = 500)

bag_tree.fit(bike_datal['log_km_driven', 'year']],
bike_data['log_selling_price'])

#i#t log_km_driven year bagged_preds KNN_preds
0 9.5 1990 41952.680319 24986.659549
1 9.5 2015 46689.655309 73986.362230
##t 2 10.6 1990 16216.796741 24986.659549
3 10.6 2015 34235.698665 34552.116150

24 [28

GridSearchCV

e No 'built-in' CV function
e Use GridSearchCV()

25 /28

GridSearchCV

e No 'built-in' CV function
e Use GridSearchCV()

from sklearn.model_selection import GridSearchCV

k_range = list(range(1, 100))

param_grid = dict(n_neighbors=k_range)

defining parameter range

grid = GridSearchCV(KNeighborsRegressor(),
param_grid,
cv=5,
scoring='neg_root_mean_squared_error")

26 /28

GridSearchCV

e No 'built-in' CV function
e Use GridSearchCV()

from sklearn.model_selection import GridSearchCV

k_range = list(range(1, 100))

param_grid = dict(n_neighbors=k_range)

defining parameter range

grid = GridSearchCV(KNeighborsRegressor(),
param_grid,
cv=5,
scoring='neg_root_mean_squared_error")

grid.fit(bike_datal[['log_km_driven', 'year']],
bike_datal['log_selling_price'])

print(grid.best_params_)

{'n_neighbors': 49}

27 [28

Recap

KNN uses k closest observations from the training set for prediction

Very flexible to not flexible!

Can be used for both regression and classification problems

o KNeighborsRegressor() or KNeighborsClassifier()

CV easily done with GridSearchCV()

28 /28

