MLOps

Justin Post

• Big picture of dealing with big data: it's complicated!

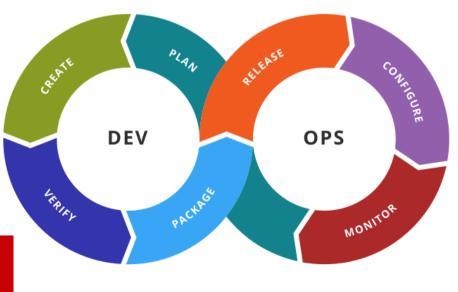
NC STATE UNIVERSITY

• Big picture of dealing with big data: it's complicated!

- Data pipeline
 - Is the data valid?
 - Garbage in garbage out!
- ML pipeline
 - Model performing well?
 - Still valid with new data or refit needed?
- How do others use our model???

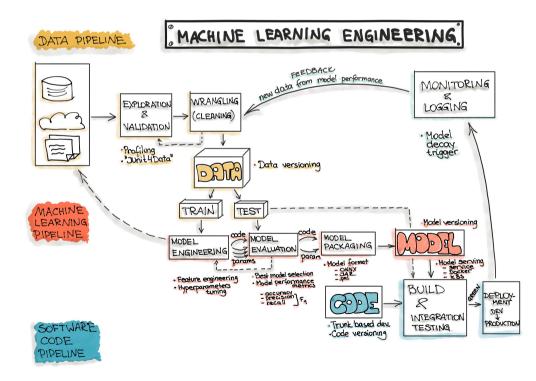
NC STATE UNIVERSITY

- Good software is hard to build quickly
- DevOps is a framework for software development and deployment
 - Automation of the software development lifecycle
 - Collaboration and communication
 - Continuous improvement and minimization of waste
 - Hyperfocus on user needs with short feedback loops



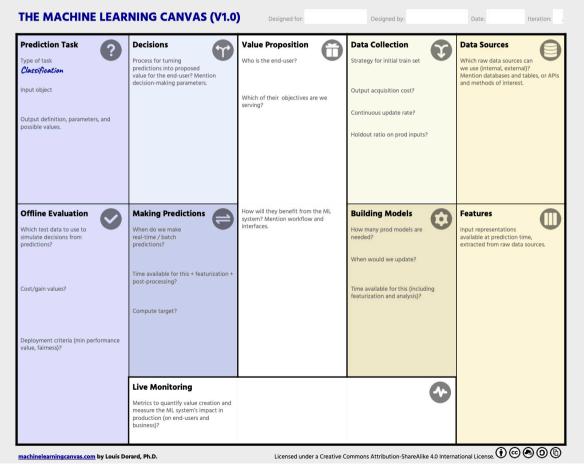
NC STATE UNIVERSITY

- Similar ideas have arisen when implementing ML models (especially on big data)
- ML-Ops is a framework for the entire ML development/deployment process
 - These notes are almost entirely distilled from their material!



MLOps to Solve a Problem

Good read from "Value Proposition" on!



MLOps Concepts

- Models really useful when they make reasonable predictions and are available to the 'core software system'
- Models should be 'first-class citizens'
- Must continually monitor and update models (three levels of change)
- Testing of models should be automated

<text><section-header><section-header>

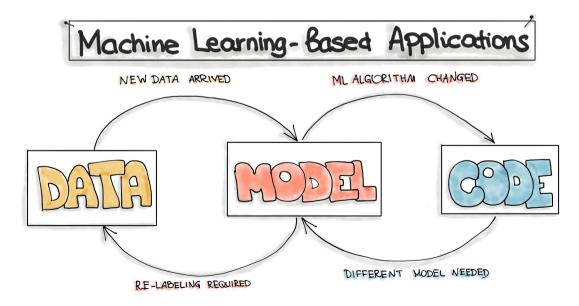
MLOps Evolution

The Evolution of #MLOps			
Proprietary Inference Servers	The Rise of Open Source Data Science Tools	Containerization to-the-rescue	"MLOps Platforms"
using proprietary tools to perform modeling and inference • SAS • SPSS • FICO	 attempt to wrap the data science stack in a lightweight web service framework, and put it into production Python: SciPy stack scitkit-learn TensorFlow etc. R: dplyr ggplot2 etc. Spark, H2O, others 	Containerization of the "Stone Age" approach, making it easy to scale, robust, etc.	 Dockerized open- source ML stacks Deployed them on- premise or in the cloud via Kubernetes and providing some manageability ("ML Ops").
Pre-History Age	2000 20 Stone Age)15 2 Bronze Age	2018 MLOps Gold Rush Age
Sketch: @visenger		Source	ce: bit.ly/mlops-evolution

Three Main Processes of ML Deployment

Build model on data you collect to make predictions, classifications, recommendations, etc.

- Three main phases, each must be monitored (again taken from ml-ops.org!)
 - 1. Data Engineering: data acquisition & data preparation
 - 2. ML Model Engineering: ML model training & serving
 - 3. Code Engineering :integrating ML model into the final product



Data Engineering

Usually create a *Data Engineering Pipeline*:

- Must integrate data from many source
- Data cleaning, imputation, and validation must be done
- Data splitting

Generally takes the longest time and most resources to do this part!

ML Model Engineering

Model Engineering Pipeline generally has a few steps:

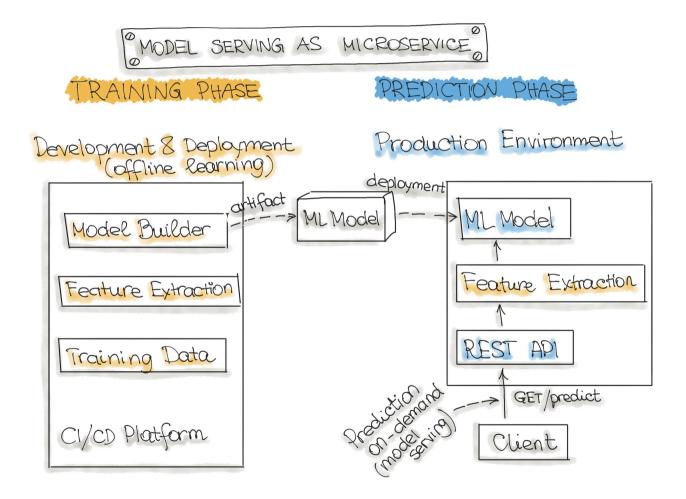
- Model Training
 - Including feature engineering and the hyperparameter tuning
- Model Evaluation
 - Ensure it meets predetermined standards
- Model Testing
 - On the holdout dataset
- Model Packaging
 - Exporting the final ML model to be used by a business application
 - See the "Model serialization formats" section

Code Engineering

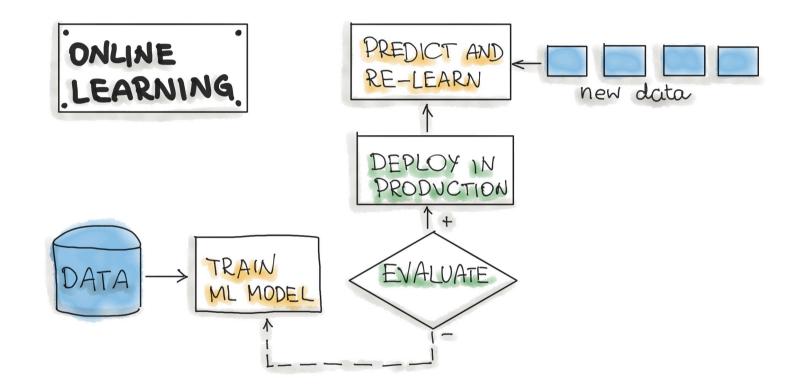
Deployment pipeline involves things like:

- Model Serving
 - Using the model in some software
- Model Performance Monitoring
 - Making sure the model is still performing ok on new data
- Model Performance Logging
 - Every time the model is used you log it

Models Built on Batch Data



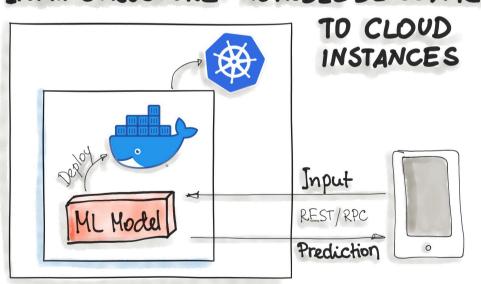
Models Based on Streaming Data



Deployment Strategies

Two common ways for deploying models:

- As Docker Containers to Cloud Instances
- As Serverless Functions



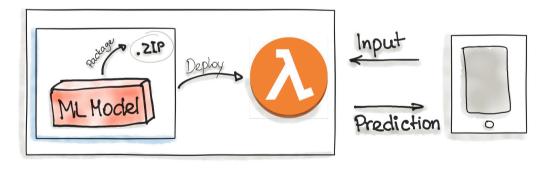
INFRASTRUCTURE: HI HODEL DEPLOYMENT

Deployment Strategies

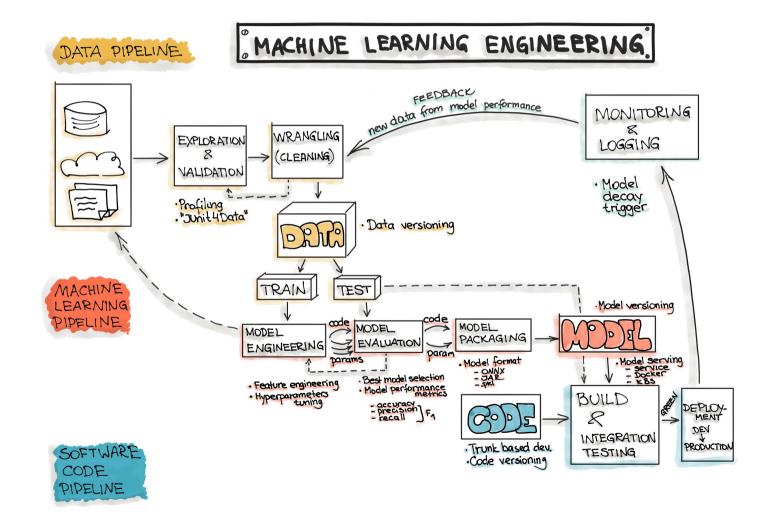
Two common ways for deploying models:

- As Docker Containers to Cloud Instances
- As Serverless Functions

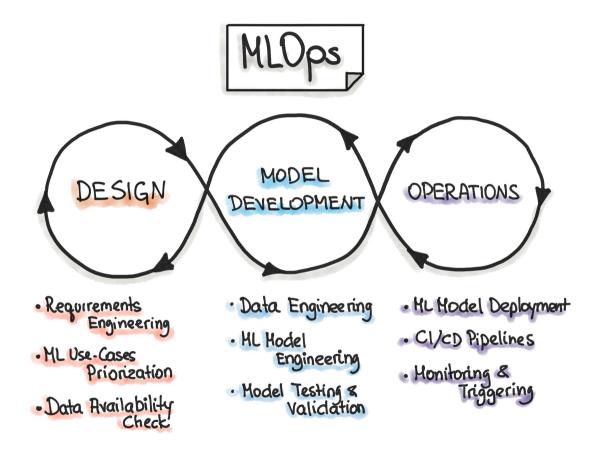
INFRASTRUCTURE: HL HODEL DE PLOYHENT AS SERVERLES FUNCTION



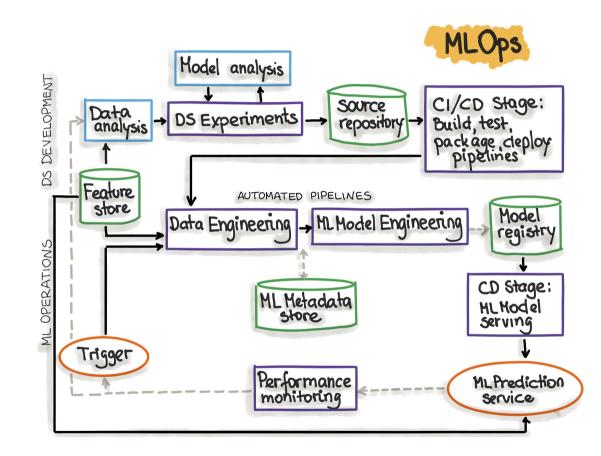
Big Picture Workflow



Iterative Process That Must Be Monitored



Automated MLOps Pipeline



Important Components to Consider

Entire Section Worth Reading

- Source Control: Versioning the Code, Data, and ML Model artifacts
- Test & Build Services: Unit tests and building of model to be deployed
- Model Registry: Registry for storing already trained ML models
- Feature Store: Preprocessing input data as features to be consumed in the model training pipeline and during the model serving
- ML Metadata Store: Tracking metadata of model training, for example model name, parameters, training data, test data, and metric results.
- Reproducibility

Recap

MLOps provides a framework to efficiently include ML models within a business application

- Three main phases, each must be monitored (again taken from ml-ops.org!)
 - 1. Data Engineering: data acquisition & data preparation
 - 2. ML Model Engineering: ML model training & serving
 - 3. Code Engineering :integrating ML model into the final product