
Reading and Writing Streams with Spark Structured
Streaming
Justin Post

1 / 23

Recap
We'll use Spark Structured Streaming to handle our streaming data (Guide)

Create a spark session

1. Read in a stream
Stream from a file, terminal, or use something like kafka

2. Set up transformations/aggregations to do (mostly using SQL type functions)
Perhaps over windows

3. Set up writing of the query to an output source
Console (for debugging)
File (say .csv)
Database

4. query.start() the query!
Continues listening until terminated (query.stop())

2 / 23

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

Streaming DataFrames
Stream is read into a Spark SQL data frame

Data frames can be used to represent both static data and streaming data

Differences:

Streaming data frames are unbounded and schema is only checked at runtime
Rows added incrementally

h // k h /d /l / d i i id h l

3 / 23

Streaming DataFrames

When the query starts, Spark will check for new data (at a specified interval of time)
If there is new data, Spark will run an “incremental” query that combines the previous
running counts with the new data to compute updated counts

4 / 23

Streaming DataFrames

Note that Structured Streaming does not materialize the entire table. It reads the
latest available data from the streaming data source, processes it incrementally to
update the result, and then discards the source data. It only keeps the minimal
intermediate state data as required to update the result (e.g. intermediate counts).

5 / 23

Reading a Stream
Stream read in using the DataStreamReader interface (SparkSession.readStream)

readStream has different methods to customize/set-up how to read the stream

6 / 23

https://spark.apache.org/docs/latest/api/python/reference/pyspark.ss/index.html

Reading a Stream
Stream read in using the DataStreamReader interface (SparkSession.readStream)

readStream has different methods to customize/set-up how to read the stream

.format() - (generic) specifies the input source

.schema() - setup what Spark should expect

.option(key, value) - allows an input option on a file source

.load() - loads a data stream and returns a DataFrame

7 / 23

https://spark.apache.org/docs/latest/api/python/reference/pyspark.ss/index.html

Reading Data from a Kafka Stream
Common syntax for reading in data

df = spark \
 .readStream \
 .format("kafka") \
 .option("kafka.bootstrap.servers", "localhost:9092") \
 .option("subscribe", "topic_name") \
 .load()

8 / 23

Reading in Testing Data
rate format generates timestamp data at a specified interval of time

df = spark \
 .readStream \
 .format("rate") \
 .option("rowsPerSecond", 1) \
 .load()

9 / 23

Reading Data From a CSV
Common syntax for reading in data

myschema = StructType().add("value", "string")
df = spark \
 .readStream \
 .schema(myschema) \
 .csv("csv_files") #automatically 'loads'

10 / 23

Quick Example
Let's jump into pyspark and use the "rate" format

Will need to write the stream to see it (covered in more detail shortly)

11 / 23

Starting Streaming Queries
Notice that the process doesn't evaluate things until we use .start()

12 / 23

Starting Streaming Queries
Uses the DataStreamWriter interface (df_with_transforms_etc.writeStream)

writeStream has different methods to customize output type and location

13 / 23

https://spark.apache.org/docs/latest/api/python/reference/pyspark.ss/index.html

Starting Streaming Queries
Uses the DataStreamWriter interface (df_with_transforms_etc.writeStream)

writeStream has different methods to customize output type and location

Output type:

Complete - print entire table at each update
Only supported for aggregation queries

Append (default) - only new rows added to the Results table are outputted
Only applicable if rows added can never change (say from late data)

Update - similar to append but allows flexibility if data may change

14 / 23

https://spark.apache.org/docs/latest/api/python/reference/pyspark.ss/index.html

Starting Streaming Queries
Uses the DataStreamWriter interface (df_with_transforms_etc.writeStream)

writeStream has different methods to customize output type and location

Output type:

Complete - print entire table at each update
Only supported for aggregation queries

Append (default) - only new rows added to the Results table are outputted
Only applicable if rows added can never change (say from late data)

Update - similar to append but allows flexibility if data may change

Nice table in the guide to help out!

15 / 23

https://spark.apache.org/docs/latest/api/python/reference/pyspark.ss/index.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#creating-streaming-dataframes-and-streaming-datasets

Starting Streaming Queries
Uses the DataStreamWriter interface (df_with_transforms_etc.writeStream)

writeStream has different methods to customize output type and location

Output sinks (location):

console sink for debugging
query.writeStream.outputMode("append").format("console")

16 / 23

https://spark.apache.org/docs/latest/api/python/reference/pyspark.ss/index.html

Starting Streaming Queries
Uses the DataStreamWriter interface (df_with_transforms_etc.writeStream)

writeStream has different methods to customize output type and location

Output sinks (location):

console sink for debugging
query.writeStream.outputMode("append").format("console")

memory - stores output in an in-memory table that you can investigate
query.writeStream.format("memory").queryName("tableName")

File sink (csv, json, parquet, etc)
query.writeStream.outputMode("append").format("csv").option("path",
"path_to_file")

17 / 23

https://spark.apache.org/docs/latest/api/python/reference/pyspark.ss/index.html

Starting Streaming Queries
Uses the DataStreamWriter interface (df_with_transforms_etc.writeStream)

writeStream has different methods to customize output type and location

Output sinks (location):

console sink for debugging
query.writeStream.outputMode("append").format("console")

memory - stores output in an in-memory table that you can investigate
query.writeStream.format("memory").queryName("tableName")

File sink (csv, json, parquet, etc)
query.writeStream.outputMode("append").format("csv").option("path",
"path_to_file")

Kafka sink

Nice table in the guide to help out!

18 / 23

https://spark.apache.org/docs/latest/api/python/reference/pyspark.ss/index.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#creating-streaming-dataframes-and-streaming-datasets

Starting Streaming Queries
Updates based on trigger settings

Default uses micro-batches which are generated as soon as the previous micro-batch
has completed processing

19 / 23

Starting Streaming Queries
Updates based on trigger settings

Default uses micro-batches which are generated as soon as the previous micro-batch
has completed processing
Fixed interval micro-batches (see guide for more info)

writeStream....trigger(processingTime = "2 seconds")....
One-time micro-batch - executes once and shuts itself down (essentially a quick
update since you last ran the query)

writeStream....trigger(once = True)....
Continuous - experimental

20 / 23

Multiple Queries and Stopping Queries
Can do multiple queries at once and they share resources

spark.streams.active gives a list of all active streaming queries

Stop the query with query.stop() (where query is the name of the query)

Spark has a GUI to help monitor! Doesn't work easily within our jupyterhub though

http://localhost:4040/

21 / 23

http://localhost:4040/

Quick Example
Let's write to a table in memory!

22 / 23

Recap
Read in streams with readStream

Write queries with writeStream

Must .start() the query

Can run multiple queries at once

23 / 23

