Reactivity inthe server

Justin Post

Recap

e app.R file contains ui, server, and code to run the app
e UI can be built in many ways!

o bslib functions give nice layouts and functionality (page_sidebar(), cards(),
value_box(), etc.)

e Widgets (xInput functions), Text, HTML elements, etc. are added to the UI
e renderx functions go in the server with *Output functions in the UI

o Server code can access widget inputs via input$x*

NC STATE UNIVERSITY 2/21

Recap: Server file

server also called the 'back-end’ because it works behind-the-scenes

set up server

server <- function(input, output, session) {
add stuff

3

NC STATE UNIVERSITY -

Recap: Server file

server also called the 'back-end’ because it works behind-the-scenes

set up server

server <- function(input, output, session) {
add stuff

3

The arguments for the server are input, output, and session. Allow us to
1. Take in inputs from the UI
2. Run functions on them

3. Create outputs to send back

NC STATE UNIVERSITY 4/21

Recap: Accessing Input Values in server

e Every input object has an inputId
e In server.r, reference input value by

input$inputId

e Example

#input widget code from ui.r file
sliderInput(inputId = "slide",label = "Select the Range Here",min = 0,max = 1,
value = c(0,1))

#reference in server might look like

output$userPlot<-renderPlot({
range<-input$slide
#create plot that changes based on user input
plot(data,xlim=range)

1)

5/21

Recap: Creating Output to Send to Ul

Example syntax

server <- function(input, output, session) {
output$nameOfOutputObject <- renderPlot({
#code that will return a plot
1)

output$otherOutput <- renderText({
#code that will return something that R can coerce to a string
1)
3

#in ui.r file, reference would look 1like
plotOutput("nameOfOutputObject")
textOutput("otherOutput")

6/21

Input and Output

e input and output objects are kind of like lists
e Shiny passes the information back and forth through them

e Notice how we name our output objects

output$nameOfOutputObject <- renderPlot(...)

e Notice how we access our inputs

output$nameOfOutputObject <- renderPlot(
range <- input$slide

7121

Reactivity

o Output objects do not have to depend on an input
e Those that don't will be static
o Any 'chunk’ of code in server that references a user input must be reactive

o When a user changes an input the input$ value associated invalidates and causes
dependent chunks of code to re-evaluate in the server

8/21

Example Reactivity

##code chunk "reacts" to and re-evaluates if
##input$sampleSize or input$otherInput changes

output$dataPlot <- renderPlot({
n <- input$sampleSize
input$otherInput #not used anywhere else, but entire
#renderPlot chunk still re-evaluates
#1f changed

hist(rbinom(n = 1, size = n, prob = 0.4))

i)

e type shiny::runExample("01_hello") into the console

9/21

Reactivity

e server can run any R code, but can't access inputs unless put into a reactive context

e All render* functions are reactive contexts

10/ 21

Error Using Reactive Variables

This type of error is common when first starting!

server <- function(input, output, session) {
print(input$numeric_value + 10) #error due to this!
output$string <- renderText({
paste("value plus 10 is", input$numeric_value + 10)

1)

Warning: Error in .getReactiveEnvironment()$currentContext: Operation not
allowed without an active reactive context. (You tried to do something that can
only be done from inside a reactive expression or observer.)

11/21

Reactive Contexts

e render*() functions
e Functions that can return an object:

o reactive({}) creates a reactive context and allows for the creation of a new variable
o reactiveValues({}) similar to reactive but is easier to create multiple items
o eventReactive({}) allows for easy control of reevaluation

e Functions that allow for side-effects

o observe({}) function allows for reactivity and reevaluation of code
o observeEvent({}) similar to observe but allows for more control over revaluation of
code

12 /21

Reactvity Examples

e Let's download and run this sampling distribution app
e clone it!

e Run the app with: runApp(display.mode = "showcase")

13/21

Moreon reactive({})

e 'Wraps' a normal expression to create a reactive expression (code user can cause to
change)

o Can read reactive values and call other reactive expressions
o Only re-evaluates if necessary
o Usually used to save something you'll call in multiple other places

o Access object as though calling it as a function

14 /21

Moreon reactive({})

o Access object as though calling it as a function

server <- function(input, output, session) {
#Creates a new reactive variable
newVar <- reactive({
value <- c(input$NI + 10, input$NI * 3)
1)

output$textString <- renderText({
value <- newVar() #access like a function!
paste@("Input plus 10 is ", value[1], " and Input times 3 is ", value[2])

1)

output$otherString <- renderText({
value <- newVar()
paste@(valuel[1], ",", value[2])
1)

15/21

reactiveValues()

e Create list like object with reactiveValues()
e Access elements via $

e Elements can be modified in a reactive context

server <- function(input, output, session) {
#Creates a new reactive values
vals <- reactiveValues(data = rnorm(150), initial = 0)

output$textString <- renderText({
pasted("The value of initial is

1)

output$hist <- renderPlot({
hist(vals$data)
1)

, vals$initial)

16 /21

observe({})

e Can read reactive values and call reactive expressions
o Automatically re-execute when any dependencies change

o Doesn't yield a result - just re-executes the code

server <- function(input, output, session) {
#would now print to console
observe({
print(input$NI+10)
1)

#update UI
observe({

input$noPitch

updateCheckboxGroupInput(session, "pitchTypeChoice", selected = c(""))
1)

17 /21

observeEvent({})

» Similar to observe but allows for control of dependencies
o Place explicit dependencies prior to {3}

o Useful when writing things to a database or file

server <- function(input, output, session) {
#would now print to console
observeEvent(input$NI, {print(input$data)l})

#update UI

observeEvent(input$noPitch, {
updateCheckboxGroupInput(session, "pitchTypeChoice", selected = c(""))
1)

18 /21

Developing an App

Highly Recommended:
1. Draw out what you want the app to look like

o Determine UI elements, what you want the user to control
o Map out reactivity required in server

2. Create static code that works

o Write R code in a script or quarto file that does what you need with static inputs
o Produce plots, tables, text, etc. required for app

3. Translate to appropriate Shiny render* and *Output functions

19/21

Recap

Reactive Contexts can use inputs from widgets
e renderx() functions
e Functions that can return an object:

o reactive({})
o reactiveValues({})
o eventReactive({})

e Functions that allow for side-effects

o observe({})
o observeEvent({})

20 /21

Back to the Tutorial!

e Complete all of 'Build an App' on the tutorial

e Then you are ready to complete your first homework assignment!

21/21

https://shiny.posit.co/r/getstarted/build-an-app/hello-shiny/getting-started.html
https://shiny.posit.co/r/getstarted/build-an-app/hello-shiny/getting-started.html

