
Debugging & Useful Things
Justin Post

1 / 13

Other Shiny Stu� !

• Validating inputs and such
• Plotly
• Debugging!

2 / 13

Validating Inputs

• Often errors will show if computations are running or inputs are temporarily changed
(Bad Shiny Example)

◦ Can validate inputs/data!

validate(
 need(!is.null(sample_corr$corr_data), "Please select your variables, subset,
 and click the 'Get a Sample!' button.")
)

• Check this out here

3 / 13

https://shiny.stat.ncsu.edu/jbpost2/SamplingDistribution/
https://shiny.stat.ncsu.edu/jbpost2/SamplingDistribution/
https://shiny.stat.ncsu.edu/jbpost2/FocusLessonSLR/
https://shiny.stat.ncsu.edu/jbpost2/FocusLessonSLR/

Validating Data

• We also need to verify values supplied are of the right type

◦ Easy to do with the shinyalert package!

observeEvent(input$submit_proportion, {
iiff(!is.numeric(input$proportion)){

 shinyalert(title = "Oh no!", "You must supply a number between 0 and 1!", type = "error")
 }

• Check this out here

4 / 13

https://shiny.stat.ncsu.edu/jbpost2/FocusLessonCI/
https://shiny.stat.ncsu.edu/jbpost2/FocusLessonCI/

Loaders

• Sometimes a plot or computation will take a while to show

◦ User may think an error has occurred and click away or reclick causing more delay...

◦ Can add spinners and things via shinycssloaders

tabPanel(title = "Map View",
 shinycssloaders::withSpinner(
 leaflet::leafletOutput("map_plot"))
)

• Check this out here

5 / 13

https://shiny.stat.ncsu.edu/jbpost2/FocusLessonZ/
https://shiny.stat.ncsu.edu/jbpost2/FocusLessonZ/

Plotly!

• Know how to plot with ggplot2

• Plots are not inherently interactive...

◦ Install plotly package
◦ Wrap any ggplot in `ggp
◦ Change renderPlot() and plotOutput() functions to renderPlotly() and

plotlyOutput()

......
 plotlyOutput("boot_graph")
......
output$boot_graph <- renderPlotly({
 g <- ggplot(my_plot_data, aes(x = phat)) +
 geom_histogram(bins = 50, fill = "black", aes(group = Quantile))
 ggplotly(g, tooltip = c("x", "group"))

• Check this out here

6 / 13

https://shiny.stat.ncsu.edu/jbpost2/FocusLessonCI/
https://shiny.stat.ncsu.edu/jbpost2/FocusLessonCI/

Debugging

• Much harder in shiny!

• Shiny debugging page

• Recommendations:

◦ Get static working code, then transfer to shiny
◦ Build app in small pieces, testing as you go

7 / 13

https://shiny.posit.co/r/articles/improve/debugging/
https://shiny.posit.co/r/articles/improve/debugging/

Basic Debugging

• Can use observe({print(...)})

observe({print(input$NI + 10)})

8 / 13

Debugging

Three major approaches:

1. Breakpoints - Pausing execution of your program

2. Tracing - Collecting information as your program runs

3. Error handling - Finding the source of errors (both on the client and server side) and
ascertaining their cause.

9 / 13

Breakpoints

• Easiest method to debug!

◦ Can be used in server.r
◦ Click to the left of the line number

• Now can access values and step through program

10 / 13

Dynamic Breakpoints

• You can add an actionButton() that when clicked calls browser()

◦ This kicks you into a debugger with all current inputs!

• Can make Shiny enter the debugger when an error occurs by using the following
statement:

options(shiny.error = browser)

11 / 13

Error Handling

• Check stack trace shiny returns

12 / 13

Recap

• Validating inputs and such
• Plotly
• Debugging!

13 / 13

