
Modeling Concepts: Inference vs Prediction
Justin Post

1 / 29

What do we want to be able to do?

Data Science!

• Read in raw data and manipulate it
• Combine data sources
• Summarize data to glean insights
• Apply common analysis methods
• Communicate Effectively

2 / 29

Modeling Ideas

What is a (statistical) model?

• A mathematical representation of some phenomenon on which you've observed data
• Form of the model can vary greatly!

3 / 29

Modeling (log) Selling Price

• First a visual on motorcycle sales data

bike_data <- read_csv("https://www4.stat.ncsu.edu/~online/datasets/bikeDetails.csv")
bike_data <- bike_data |>
 mutate(log_selling_price = log(selling_price),
 log_km_driven = log(km_driven)) |>
 select(log_km_driven, log_selling_price, everything())
bike_data

A tibble: 1,061 x 9
log_km_driven log_selling_price name selling_price year seller_type owner
<dbl> <dbl> <chr> <dbl> <dbl> <chr> <chr>
1 5.86 12.1 Royal E~ 175000 2019 Individual 1st ~
2 8.64 10.7 Honda D~ 45000 2017 Individual 1st ~
3 9.39 11.9 Royal E~ 150000 2018 Individual 1st ~
4 10.0 11.1 Yamaha ~ 65000 2015 Individual 1st ~
5 9.95 9.90 Yamaha ~ 20000 2011 Individual 2nd ~
i 1,056 more rows
i 2 more variables: km_driven <dbl>, ex_showroom_price <dbl>

4 / 29

Modeling (log) Selling Price

• First a visual on motorcycle sales data

ggplot(bike_data, aes(x = log_km_driven, y = log_selling_price)) +
 geom_point() +
 geom_smooth(method = "lm")

`geom_smooth()` using formula = 'y ~ x'

5 / 29

Modeling (log) Selling Price

• First a visual on motorcycle sales data

ggplot(bike_data, aes(x = log_km_driven, y = log_selling_price)) +
 geom_point() +
 stat_smooth(method = "lm", formula = y ~ x + I(x^2))

6 / 29

Modeling (log) Selling Price

• First a visual on motorcycle sales data

ggplot(bike_data, aes(x = log_km_driven, y = log_selling_price)) +
 geom_point() +
 stat_smooth(method = "lm", formula = y ~ x + I(x^2) + I(x^3))

7 / 29

Modeling (log) Selling Price

• First a visual on motorcycle sales data

ggplot(bike_data, aes(x = log_km_driven, y = log_selling_price)) +
 geom_point() +
 geom_smooth()

`geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

8 / 29

Modeling (log) Selling Price

Warning: package 'tree' was built under R version 4.1.3

ggplot(bike_data, aes(x = log_km_driven, y = log_selling_price)) +
 geom_point() +
 geom_line(data = preds, aes(x = log_km_driven, y = Tree_Predictions), color = "Blue", linewidth = 2)

9 / 29

Modeling Ideas

What is a (statistical) model?

• A mathematical representation of some phenomenon on which you've observed data
• Form of the model can vary greatly!

Statistical learning - Inference, prediction/classification, and pattern finding

• Supervised learning - a variable (or variables) represents an output or response of
interest

◦ May model response and
▪ Make inference on the model parameters
▪ predict a value or classify an observation

Our Goal: Understand what it means to be a good predictive model (not make inference)

10 / 29

Training a Model

• Once a class of models is chosen, we must define some criteria to fit (or train) the model

Simple Linear Regression (SLR) Model

E(Yi|xi) = β0 + β1xi

11 / 29

Training a Model

• Once a class of models is chosen, we must define some criteria to fit (or train) the model

Simple Linear Regression (SLR) Model

• Loss function - Criteria used to fit or train a model

◦ For a given numeric response value, and prediction,

E(Yi|xi) = β0 + β1xi

yi ŷ i

yi − ŷ i, (yi − ŷ i)
2, |yi − ŷ i|

12 / 29

Training a Model

• Once a class of models is chosen, we must define some criteria to fit (or train) the model

Simple Linear Regression (SLR) Model

• Loss function - Criteria used to fit or train a model

◦ For a given numeric response value, and prediction,

• We try to optimize the loss over all the observations used for training

E(Yi|xi) = β0 + β1xi

yi ŷ i

yi − ŷ i, (yi − ŷ i)
2, |yi − ŷ i|

n

∑
i=1

(yi − ŷ i)
2

n

∑
i=1

|yi − ŷ i|

13 / 29

Training (Fitting) the SLR Model

• Often use squared error loss (least squares regression)

• Nice solutions for our estimates exist!

β̂0 = ȳ − x̄β̂1

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)

∑n
i=1(xi − x̄)2

14 / 29

Training (Fitting) the SLR Model

• Often use squared error loss (least squares regression)

• Nice solutions for our estimates exist!

y <- bike_data$log_selling_price
x <- bike_data$log_km_driven
b1_hat <- sum((x-mean(x))*(y-mean(y)))/sum((x-mean(x))^2)
b0_hat <- mean(y)-mean(x)*b1_hat
c(round(b0_hat, 4), round(b1_hat, 4))

[1] 14.6356 -0.3911

• Now we can find a prediction! Denoted as

β̂0 = ȳ − x̄β̂1

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)

∑n
i=1(xi − x̄)2

ŷ

15 / 29

Training (Fitting) the SLR Model in R

• Use lm() function to fit in R

• Utilizes formula notation: y ~ x -> response ~ model terms

slr_fit <- lm(log_selling_price ~ log_km_driven, data = bike_data)
slr_fit

Call:
lm(formula = log_selling_price ~ log_km_driven, data = bike_data)

Coefficients:
(Intercept) log_km_driven
14.6356 -0.3911

16 / 29

Inference Using the SLR Model in R

• If we assume iid errors that are Normally distributed with the same variance, we can
conduct inference!

◦ Confidence intervals and hypothesis tests around the slope parameter

◦ Use summary() (generic function!) on our fitted model

summary(slr_fit)

Call:
lm(formula = log_selling_price ~ log_km_driven, data = bike_data)

Residuals:
Min 1Q Median 3Q Max
-1.9271 -0.3822 -0.0337 0.3794 2.5656

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.63557 0.18455 79.31 <2e-16 ***
log_km_driven -0.39109 0.01837 -21.29 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5953 on 1059 degrees of freedom
Multiple R-squared: 0.2997, Adjusted R-squared: 0.299

17 / 29

Inference Using the SLR Model in R

• If we assume iid errors that are Normally distributed with the same variance, we can
conduct inference!

◦ Can use anova() to get Analysis of Variance information

anova(slr_fit)

Analysis of Variance Table

Response: log_selling_price
Df Sum Sq Mean Sq F value Pr(>F)
log_km_driven 1 160.58 160.583 453.19 < 2.2e-16 ***
Residuals 1059 375.24 0.354

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

18 / 29

Inference Using the SLR Model in R

• If we assume iid errors that are Normally distributed with the same variance, we can
conduct inference!

◦ Residual diagnostics can be found via plot() on the fitted model

19 / 29

Inference Using the SLR Model in R

• If we assume iid errors that are Normally distributed with the same variance, we can
conduct inference!

◦ Residual diagnostics can be found via plot() on the fitted model

20 / 29

Prediction Using the SLR Model in R

• Can use the line for prediction with predict()!

◦ Another generic function in R

predict

function (object, ...)
UseMethod("predict")
<bytecode: 0x0000000015bef250>
<environment: namespace:stats>

predict.lm

function (object, newdata, se.fit = FALSE, scale = NULL, df = Inf,
interval = c("none", "confidence", "prediction"), level = 0.95,
type = c("response", "terms"), terms = NULL, na.action = na.pass,
pred.var = res.var/weights, weights = 1, ...)
{
tt <- terms(object)
if (!inherits(object, "lm"))
warning("calling predict.lm(<fake-lm-object>) ...")
if (missing(newdata) || is.null(newdata)) {
mm <- X <- model.matrix(object)
mmDone <- TRUE
offset <- object$offset
}
else {

21 / 29

Prediction Using the SLR Model in R

• Can use the line for prediction with predict()!

◦ Should supply fitted object and newdata

▪ An optional data frame in which to look for variables with which to predict. If
omitted, the fitted values are used.

predict(slr_fit, newdata = data.frame(log_km_driven = c(log(1000), log(10000), log(100000))))

1 2 3
11.93404 11.03353 10.13302

exp(predict(slr_fit, newdata = data.frame(log_km_driven = c(log(1000), log(10000), log(100000)))))

1 2 3
152365.60 61915.64 25160.19

22 / 29

Quantifying How Well the Model Predicts

We use a loss function to fit the model. We use a metric to evaluate the model!

• Often use the same loss function for fitting and as the metric
• For a given numeric response value, and prediction,

• Incorporate all points via

yi ŷ i

(yi − ŷ i)
2, |yi − ŷ i|

n

∑
i=1

(yi − ŷ i)
2,

n

∑
i=1

|yi − ŷ i|
1
n

1
n

23 / 29

Metric Function

• For a numeric response, we commonly use squared error loss as our metric to evaluate a
prediction

• Use Root Mean Square Error as a metric across all observations

L(yi, ŷ i) = (yi − ŷ i)
2

RMSE =
⎷

n

∑
i=1

L(yi, ŷ i) =
⎷

n

∑
i=1

(yi − ŷ i)
21

n

1
n

24 / 29

Commonly Used Metrics

For prediction (numeric response)

• Mean Squared Error (MSE) or Root Mean Squared Error (RMSE)
• Mean Absolute Error (MAE or MAD - deviation)

• Huber Loss
◦ Doesn't penalize large mistakes as much as MSE

L(yi, ŷ i) = |yi − ŷ i|

25 / 29

https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Huber_loss

Commonly Used Metrics

For prediction (numeric response)

• Mean Squared Error (MSE) or Root Mean Squared Error (RMSE)
• Mean Absolute Error (MAE or MAD - deviation)

• Huber Loss
◦ Doesn't penalize large mistakes as much as MSE

For classification (categorical response)

• Accuracy
• log-loss
• AUC
• F1 Score

L(yi, ŷ i) = |yi − ŷ i|

26 / 29

https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Huber_loss

Evaluating our SLR Model

• We could find our metric for our SLR model using the training data

◦ Called training error

head(predict(slr_fit))

1 2 3 4 5 6
12.34461 11.25681 10.96222 10.70779 10.74337 10.33280

mean((bike_data$log_selling_price-predict(slr_fit))^2)

[1] 0.3536708

sqrt(mean((bike_data$log_selling_price-predict(slr_fit))^2))

[1] 0.5947023

• Doesn't tell us how well we do on data we haven't seen!

27 / 29

Training vs Test Sets

Ideally we want our model to predict well for observations it has yet to see!

• For multiple linear regression models, our training MSE will always decrease as we add
more variables to the model...

• We'll need an independent test set to predict on (more on this shortly!)

28 / 29

Big Picture Modeling

Supervised Learning methods try to relate predictors to a response variable through a model

• Lots of common models

◦ Regression models
◦ Tree based methods
◦ Naive Bayes
◦ k Nearest Neighbors
◦ ...

• For a set of predictor values, each will produce some prediction we can call

• Evaluate model via a metric

• Will use an independent test set or cross-validation to more accurately judge our model

ŷ

29 / 29

