Modeling Concepts: Inference vs Prediction

Justin Post



What do we want to be able to do?

Data Science!

e Read in raw data and manipulate it
e Combine data sources

e Summarize data to glean insights

e Apply common analysis methods

e Communicate Effectively
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Modeling ldeas

What is a (statistical) model?

o A mathematical representation of some phenomenon on which you've observed data
e Form of the model can vary greatly!
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Modeling (log) Selling Price

bike_data <- read_csv("https://www4.stat.ncsu.edu/~online/datasets/bikeDetails.csv")

e First a visual on motorcycle sales data

bike_data <- bike_data |>
mutate(log_selling_price = log(selling_price),

log_km_driven = log(km_driven)) |>

select(log_km_driven, log_selling_price, everything())

bike_data

## # A tibble: 1,061 x 9

##  log_km_driven log_selling_price name selling_price
## <dbl> <dbl> <chr> <dbl>
# 1 5.86 12.1 Royal E~ 175000
## 2 8.64 10.7 Honda D~ 45000
## 3 9.39 11.9 Royal E~ 150000
## 4 10.0 11.1 Yamaha ~ 65000
## 5 9.95 9.90 Yamaha ~ 20000
## # 1 1,056 more rows

## # 1 2 more variables: km_driven <dbl>, ex_showroom_price

year
<dbl>
2019
2017
2018
2015
2011

<dbl>

seller_type
<chr>
Individual
Individual
Individual
Individual
Individual

owner
<chr>
1st ~
1st
1st
1st
2nd

H

?

?

H
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Modeling (log) Selling Price

e First a visual on motorcycle sales data

ggplot(bike_data, aes(x = log_km_driven, y =
geom_point() +
geom_smooth(method = "1m")

log_selling_price)) +

## ‘geom_smooth()' using formula = 'y ~ x'

log_selling_price

log_km d.;:iven | I: I.‘ 5 / 29



Modeling (log) Selling Price

e First a visual on motorcycle sales data

ggplot(bike_data, aes(x = log_km_driven, y = log_selling_price)) +
geom_point() +

stat_smooth(method = "Im", formula =y ~ x + I(x*2))

log_selling_price

log_km_driven
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Modeling (log) Selling Price

e First a visual on motorcycle sales data

ggplot(bike_data, aes(x = log_km_driven, y = log_selling_price)) +
geom_point() +

stat_smooth(method = "Im", formula =y ~ x + I(x*2) + I(x*3))

log_selling_price

log_km_driven
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Modeling (log) Selling Price

e First a visual on motorcycle sales data

ggplot(bike_data, aes(x = log_km_driven, y = log_selling_price)) +
geom_point() +
geom_smooth()

## ‘geom_smooth()' using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
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Modeling (log) Selling Price

## Warning: package 'tree' was built under R version 4.1.3

ggplot(bike_data, aes(x = log_km_driven, y = log_selling_price)) +
geom_point() +

geom_line(data = preds, aes(x = log_km_driven, y = Tree_Predictions), color = "Blue", linewidth = 2)

log_selling_price

log_km_driven
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Modeling ldeas

What is a (statistical) model?

o A mathematical representation of some phenomenon on which you've observed data
e Form of the model can vary greatly!

Statistical learning - Inference, prediction/classification, and pattern finding

e Supervised learning - a variable (or variables) represents an output or response of
interest

o May model response and
= Make inference on the model parameters
» predict a value or classify an observation

Our Goal: Understand what it means to be a good predictive model (not make inference)
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Training a Model

e Once a class of models is chosen, we must define some criteria to fit (or train) the model

Simple Linear Regression (SLR) Model
E(Yi|z;) = Bo + B
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Training a Model

e Once a class of models is chosen, we must define some criteria to fit (or train) the model

Simple Linear Regression (SLR) Model
E(Y;i|z;) = Bo + Pizi
e Loss function - Criteria used to fit or train a model

o For a given numeric response value, y; and prediction, y,

Yi — g’h (yz - ?ji)27 |yz — Qz|
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Training a Model

e Once a class of models is chosen, we must define some criteria to fit (or train) the model
Simple Linear Regression (SLR) Model
E(Yi|zi) = Bo + Brz;
e Loss function - Criteria used to fit or train a model

o For a given numeric response value, y; and prediction, y,

A

~ 2 ~
Yi — Y (¥ — 9:)%5 lvi — U4
o We try to optimize the loss over all the observations used for training

n n

Z(yz - ij)z Z yi — 9,
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Training (Fitting) the SLR Model

o Often use squared error loss (least squares regression)

e Nice solutions for our estimates exist!
,80 =Y — 53/81
Z?ﬂ(mi —Z)(yi — ¥)
Z?ﬂ(mi — I)?

31:
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Training (Fitting) the SLR Model

o Often use squared error loss (least squares regression)

e Nice solutions for our estimates exist!

Bo =Y — 531
31 _ 2?1(7-;131 —Z)(yi — ¥)

y <- bike_data$log_selling_price
x <- bike_data$log_km_driven

b1_hat <- sum((x-mean(x))*(y-mean(y)))/sum((x-mean(x))*2)
b@_hat <- mean(y)-mean(x)*b1_hat
c(round(b@_hat, 4), round(b1_hat, 4))

## [1] 14.6356 -0.3911

e Now we can find a prediction! Denoted as y
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Training (Fitting) the SLR Model in R

e Use 1m() function to fitin R

e Utilizes formula notation: y ~ x -> response ~ model terms

slr_fit <- 1m(log_selling_price ~ log_km_driven, data = bike_data)
slr_fit

HH#

## Call:

## Im(formula = log_selling_price ~ log_km_driven, data = bike_data)
HH#

## Coefficients:

##  (Intercept) log_km_driven

HH# 14.6356 -0.3911
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Inference Using the SLR Model in R

o If we assume iid errors that are Normally distributed with the same variance, we can

conduct inference!

o Confidence intervals and hypothesis tests around the slope parameter

o Use summary() (generic function!) on our fitted model

summary(slr_fit)

#it
#i#t
#Hit
#it
#i#t
#Hit
#it
#i#t
#Hit
#it
#i#t
#Hit
#it
#i#t
#Hit
#it

AL L

Call:
Im(formula = log_selling_price ~ log_km_driven, data = bike_data)
Residuals:

Min 1Q Median 30 Max
-1.9271 -0.3822 -0.0337 0.3794 2.5656
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 14.63557 0.18455 79. 31 <2e-16 **x%
log_km_driven -0.39109 0.01837 -21.29 <2e-16 **xx*
Signif. codes: @ '**x' 0.001 'xx' 0.01 '*' 0.05 '.' 0.1 '
Residual standard error: 0.5953 on 1059 degrees of freedom

[V e L ™ D n laYaYaSw Ade . ™ D n laYaYal

1

17/ 29



Inference Using the SLR Model in R

o If we assume iid errors that are Normally distributed with the same variance, we can
conduct inference!

o Can use anova() to get Analysis of Variance information

anova(slr_fit)

#it
#it
#it
#it
#it
#it
#it
#it

Analysis of Variance Table

Response: log_selling_price
Df Sum Sg Mean Sqg F value
1 160.58 160.583 453.19 < 2.2e-16 *%*x*

log_km_driven
Residuals

Signif. codes:

1059 375.24

0

"hxk!

0.001

0.354

l**l

0.01

I*l

Pr(>F)

0.05 ".

' 0.1

1
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Inference Using the SLR Model in R

o If we assume iid errors that are Normally distributed with the same variance, we can
conduct inference!

o Residual diagnostics can be found via plot() on the fitted model

Residuals vs Fitted

Residuals
[

95 10.0 105 11.0 15 12.0

Fitted values
Im(log_selling_price ~ log_km_driven)
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Inference Using the SLR Model in R

o If we assume iid errors that are Normally distributed with the same variance, we can

conduct inference!

o Residual diagnostics can be found via plot() on the fitted model

Standardized residuals

Normal Q-Q

Theoretical Quantiles
Im(log_selling_price ~ log_km_driven)
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Prediction Using the SLR Model in R

e Can use the line for prediction with predict()!

o Another generic function in R

predict

## function (object, ...)

## UseMethod("predict")

## <bytecode: 0x0000000015bef250>
## <environment: namespace:stats>

predict.1lm
## function (object, newdata, se.fit = FALSE, scale = NULL, df = Inf,
i interval = c("none", "confidence", "prediction"), level = 0.95,
#i# type = c("response", "terms"), terms = NULL, na.action = na.pass,
#i# pred.var = res.var/weights, weights =1, ...)
## {
#Hit tt <- terms(object)
#Hit if (!inherits(object, "1m"))
#it warning("calling predict.lm(<fake-1m-object>) ...")
#it if (missing(newdata) || is.null(newdata)) {
#Hit mm <- X <- model.matrix(object)
## mmDone <- TRUE
## offset <- object$offset
H## }

HH alce {
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Prediction Using the SLR Model in R

e Can use the line for prediction with predict()!
o Should supply fitted object and newdata

= An optional data frame in which to look for variables with which to predict. If
omitted, the fitted values are used.

predict(slr_fit, newdata = data.frame(log_km_driven = c(log(1000), log(10000), 1log(100000))))

## 1 2 3
## 11.93404 11.03353 10.13302

exp(predict(slr_fit, newdata = data.frame(log_km_driven = c(log(1000), log(10000), log(100000)))))

#i#t 1 2 3
## 152365.60 61915.64 25160.19
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Quantifying How Well the Model Predicts

We use a loss function to fit the model. We use a metric to evaluate the model!

e Often use the same loss function for fitting and as the metric
e For a given numeric response value, y; and prediction, y,

(yi — ?3@-)2, |yz — ?L|

e Incorporate all points via

1 <« o 1O .
ZZ(%—CU@) ,;izzlhﬁ—yﬁ
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Metric Function

e For a numeric response, we commonly use squared error loss as our metric to evaluate a

prediction

2

e Use Root Mean Square Error as a metric across all observations

RMSE =

1 n
\ " ;:1: (vi, ;)

\

1 & )
n z:Zl(yz — yi)z
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Commonly Used Metrics

For prediction (numeric response)

e Mean Squared Error (MSE) or Root Mean Squared Error (RMSE)
e Mean Absolute Error (MAE or MAD - deviation)

L(yi7ﬁi) — |y7, — ?jz|

e Huber Loss
o Doesn't penalize large mistakes as much as MSE
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https://en.wikipedia.org/wiki/Huber_loss
https://en.wikipedia.org/wiki/Huber_loss

Commonly Used Metrics

For prediction (numeric response)

e Mean Squared Error (MSE) or Root Mean Squared Error (RMSE)
e Mean Absolute Error (MAE or MAD - deviation)

L(yi7ﬁi) — |y7, — ?jz|

e Huber Loss
o Doesn't penalize large mistakes as much as MSE

For classification (categorical response)

e Accuracy
e log-loss

o AUC

e F1 Score
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Evaluating our SLR Model

e We could find our metric for our SLR model using the training data
o Called training error

head(predict(slr_fit))

## 1 2 3 4 5 6
## 12.34461 11.25681 10.96222 10.70779 10.74337 10.33280

mean((bike_data$log_selling_price-predict(slr_fit))*2)
## [1] 0.3536708
sqrt(mean((bike_data$log_selling_price-predict(slr_fit))*2))

## [1] 0.5947023

e Doesn't tell us how well we do on data we haven't seen!
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Training vs Test Sets

Ideally we want our model to predict well for observations it has yet to see!

e For multiple linear regression models, our training MSE will always decrease as we add
more variables to the model...

o We'll need an independent test set to predict on (more on this shortly!)
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Big Picture Modeling

Supervised Learning methods try to relate predictors to a response variable through a model
e Lots of common models

o Regression models

o Tree based methods
o Naive Bayes

o k Nearest Neighbors

O LN )

e For a set of predictor values, each will produce some prediction we can call g
e Evaluate model via a metric

o Will use an independent test set or cross-validation to more accurately judge our model
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