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Recap

Given a model, we fit the model using data

• Must determine how well the model predicts on new data
• Create a test set or use CV
• Judge effectiveness using a metric on predictions made from the model
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Regression Modeling Ideas

For a set of observations , we may want to predict a future value

• Often use the sample mean to do so,  (an estimate of )

y1, . . . , yn

ȳ E(Y )
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Regression Modeling Ideas

For a set of observations , we may want to predict a future value

• Often use the sample mean to do so,  (an estimate of )

Now consider having pairs 

y1, . . . , yn

ȳ E(Y )

(x1, y1), (x2, y2), . . . (xn, yn)
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Regression Modeling Ideas

Often use a linear (in the parameters) model for prediction

SLR model: E(Y |x) = β0 + β1x
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Regression Modeling Ideas

Can include more terms on the right hand side (RHS)

Multiple Linear Regression Model: E(Y |x) = β0 + β1x + β2x2
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Regression Modeling Ideas

Can include more terms on the right hand side (RHS)

Multiple Linear Regression Model: E(Y |x) = β0 + β1x + β2x2 + β3x3
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Regression Modeling Ideas

• We model the mean response for a given  value
• With multiple predictors or 's, we do the same idea!

x
x
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Regression Modeling Ideas

• Including a main effect for two predictors fits the best plane through the data

Multiple Linear Regression Model: E(Y |x1, x2) = β0 + β1x1 + β2x2
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Regression Modeling Ideas

• Including main effects and an interaction effect allows for a more flexible surface

Multiple Linear Regression Model: E(Y |x1, x2) = β0 + β1x1 + β2x2 + β3x1x2
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Regression Modeling Ideas

• Including main effects and an interaction effect allows for a more flexible surface

• Interaction effects allow for the effect of one variable to depend on the value of another

• Model fit previously gives

◦  = (19.005) + (-0.791)x1 + (5.631)x2 + (-12.918)x1x2ŷ
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Regression Modeling Ideas

• Including main effects and an interaction effect allows for a more flexible surface

• Interaction effects allow for the effect of one variable to depend on the value of another

• Model fit previously gives

◦  = (19.005) + (-0.791)x1 + (5.631)x2 + (-12.918)x1x2

◦ For  = 0, the slope on  is (5.631)+0*  (-12.918) = 5.631
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Regression Modeling Ideas

• Including main effects and an interaction effect allows for a more flexible surface

• Interaction effects allow for the effect of one variable to depend on the value of another

• Model fit previously gives

◦  = (19.005) + (-0.791)x1 + (5.631)x2 + (-12.918)x1x2

◦ For  = 0, the slope on  is (5.631)+0*  (-12.918) = 5.631

◦ For  = 0.5, the slope on  is (5.631)+0.5*(-12.918) = -0.828

ŷ

x1 x2

x1 x2
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Regression Modeling Ideas

• Including main effects and an interaction effect allows for a more flexible surface

• Interaction effects allow for the effect of one variable to depend on the value of another

• Model fit previously gives

◦  = (19.005) + (-0.791)x1 + (5.631)x2 + (-12.918)x1x2

◦ For  = 0, the slope on  is (5.631)+0*  (-12.918) = 5.631

◦ For  = 0.5, the slope on  is (5.631)+0.5*(-12.918) = -0.828

◦ For  = 1, the slope on  is (5.631)+1*(-12.918) = -7.286

• Similarly, the slope on  depends on !

ŷ

x1 x2

x1 x2

x1 x2

x1 x2

14 / 37



Regression Modeling Ideas

• Including main effects and an interaction effect allows for a more flexible surface
• Can also include higher order polynomial terms

Multiple Linear Regression Model: E(Y |x1, x2) = β0 + β1x1 + β2x2 + β3x1x2 + β4x2
1
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Regression Modeling Ideas

Can also include categorical variables through dummy or indicator variables

• Categorical variable with value of  and 
• Define  if variable is 
• Define  if variable is 

Success Failure
x2 = 0 Failure
x2 = 1 Success
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Regression Modeling Ideas

Can also include categorical variables through dummy or indicator variables

• Categorical variable with value of  and 
• Define  if variable is 
• Define  if variable is 

Success Failure
x2 = 0 Failure
x2 = 1 Success
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Regression Modeling Ideas

• Define  if variable is 
• Define  if variable is 

x2 = 0 Failure
x2 = 1 Success

Separate Intercept Model: E(Y |x) = β0 + β1x1 + β2x2
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Regression Modeling Ideas

• Define  if variable is 
• Define  if variable is 

x2 = 0 Failure
x2 = 1 Success

Separate Intercept and Slopes Model: E(Y |x) = β0 + β1x1 + β2x2 + β3x1x2
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Regression Modeling Ideas

• Define  if variable is 
• Define  if variable is 

x2 = 0 Failure
x2 = 1 Success

Separate Quadratics Model: E(Y |x) = β0 + β1x2 + β2x1 + β3x1x2 + β4x2
1 + β5x2

1x2
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Regression Modeling Ideas

If your categorical variable has more than k>2 categories, define k-1 dummy variables

• Categorical variable with values of "Assistant", "Contractor", "Executive"
• Define  if variable is  or 
• Define  if variable is 
• Define  if variable is  or 
• Define  if variable is 

x2 = 0 Executive Contractor
x2 = 1 Assistant
x3 = 0 Contractor Assistant
x3 = 1 Executive
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Regression Modeling Ideas

If your categorical variable has more than k>2 categories, define k-1 dummy variables

• Categorical variable with values of "Assistant", "Contractor", "Executive"
• Define  if variable is  or 
• Define  if variable is 
• Define  if variable is  or 
• Define  if variable is 

What is implied if  and  are both zero?

x2 = 0 Executive Contractor
x2 = 1 Assistant
x3 = 0 Contractor Assistant
x3 = 1 Executive

Separate Intercepts Model: E(Y |x) = β0 + β1x1 + β2x2 + β3x3

x2 x3
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Fitting an MLR Model

Big Idea: Trying to find the line, plane, saddle, etc. of best fit through points

• How do we do the fit??

◦ Usually minimize the sum of squared residuals (errors)
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Fitting an MLR Model

Big Idea: Trying to find the line, plane, saddle, etc. of best fit through points

• How do we do the fit??

◦ Usually minimize the sum of squared residuals (errors)

• Residual = observed - predicted or yi − ŷ i

min
β̂

′
s

n

∑
i=1

(yi − (β̂0 + β̂1x1i+. . . +β̂pxpi))2
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Fitting an MLR Model

Big Idea: Trying to find the line, plane, saddle, etc. of best fit through points

• How do we do the fit??

◦ Usually minimize the sum of squared residuals (errors)

• Residual = observed - predicted or 

• Closed-form results exist for easy calculation via software!

yi − ŷ i

min
β̂

′
s

n

∑
i=1

(yi − (β̂0 + β̂1x1i+. . . +β̂pxpi))2
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Fitting a Linear Regression Model in R

• Use lm()  and specify a formula : LHS ~ RHS

◦ y ~  implies y is modelled by a linear function of the RHS

◦ RHS consists of terms separated by +  operators

▪ y ~ x1 + x2  gives E(Y |x1, x2) = β0 + β1x1 + β2x2
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Fitting a Linear Regression Model in R

• Use lm()  and specify a formula : LHS ~ RHS

◦ y ~  implies y is modelled by a linear function of the RHS

◦ RHS consists of terms separated by +  operators

▪ y ~ x1 + x2  gives 

▪ :  for interactions, y ~ x1 + x2 + x1:x2  gives

E(Y |x1, x2) = β0 + β1x1 + β2x2

E(Y |x1, x2) = β0 + β1x1 + β2x2 + β3x1x2
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Fitting a Linear Regression Model in R

• Use lm()  and specify a formula : LHS ~ RHS

◦ y ~  implies y is modelled by a linear function of the RHS

◦ RHS consists of terms separated by +  operators

▪ y ~ x1 + x2  gives 

▪ :  for interactions, y ~ x1 + x2 + x1*x2  gives

▪ *  denotes factor crossing: a*b  is interpreted as a + b + a:b

▪ y ~ x - 1  removes the intercept term

E(Y |x1, x2) = β0 + β1x1 + β2x2

E(Y |x1, x2) = β0 + β1x1 + β2x2 + β3x3
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Fitting a Linear Regression Model in R

• Use lm()  and specify a formula : LHS ~ RHS

◦ y ~  implies y is modelled by a linear function of the RHS

◦ RHS consists of terms separated by +  operators

▪ y ~ x1 + x2  gives 

▪ :  for interactions, y ~ x1 + x2 + x1*x2  gives

▪ *  denotes factor crossing: a*b  is interpreted as a + b + a:b

▪ y ~ x - 1  removes the intercept term

▪ I()  can be used to create arithmetic predictors

▪ y ~ a + I(b+c)  implies b+c  is the sum of b and c

▪ y ~ x + I(x^2)  implies 

E(Y |x1, x2) = β0 + β1x1 + β2x2

E(Y |x1, x2) = β0 + β1x1 + β2x2 + β3x3

E(Y |x1) = β0 + β1x1 + β2x2
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Fitting MLR Models

• Let's read in our bike_data  and fit some MLR models

lliibbrraarryy(tidyverse)
bike_data <- read_csv("https://www4.stat.ncsu.edu/~online/datasets/bikeDetails.csv")
bike_data <- bike_data |>
  mutate(log_selling_price = log(selling_price),
         log_km_driven = log(km_driven)) |>
  select(log_km_driven, year, log_selling_price, owner, everything())
bike_data

## # A tibble: 1,061 x 9
##   log_km_driven  year log_selling_price owner    name  selling_price seller_type
##           <dbl> <dbl>             <dbl> <chr>    <chr>         <dbl> <chr>      
## 1          5.86  2019             12.1  1st own~ Roya~        175000 Individual 
## 2          8.64  2017             10.7  1st own~ Hond~         45000 Individual 
## 3          9.39  2018             11.9  1st own~ Roya~        150000 Individual 
## 4         10.0   2015             11.1  1st own~ Yama~         65000 Individual 
## 5          9.95  2011              9.90 2nd own~ Yama~         20000 Individual 
## # i 1,056 more rows
## # i 2 more variables: km_driven <dbl>, ex_showroom_price <dbl>
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Fitting MLR Models

• Create models with the same slope but intercepts differing by a categorical variable

owner_fits <- lm(log_selling_price ~ owner + log_km_driven, data = bike_data)
coef(owner_fits)

##    (Intercept) owner2nd owner owner3rd owner owner4th owner  log_km_driven 
##    14.62423775    -0.06775874     0.08148045     0.20110313    -0.38930862
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Fitting MLR Models

• Create a data frame for plotting

x_values <- seq(from = min(bike_data$log_km_driven), 
                to = max(bike_data$log_km_driven), 
                length = 2)
pred_df <- data.frame(log_km_driven = rep(x_values, 4), 
                      owner = c(rep("1st owner", 2),
                                rep("2nd owner", 2),
                                rep("3rd owner", 2),
                                rep("4th owner", 2)))
pred_df <- pred_df |> 
  mutate(predictions = predict(owner_fits, newdata = pred_df))
pred_df

##   log_km_driven     owner predictions
## 1      5.857933 1st owner   12.343694
## 2     13.687677 1st owner    9.295507
## 3      5.857933 2nd owner   12.275935
## 4     13.687677 2nd owner    9.227748
## 5      5.857933 3rd owner   12.425174
## 6     13.687677 3rd owner    9.376987
## 7      5.857933 4th owner   12.544797
## 8     13.687677 4th owner    9.496610
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Fitting MLR Models

• Plot our different intercept models

ggplot(bike_data, aes(x = log_km_driven, y = log_selling_price, color = owner)) +
  geom_point() + 
  geom_line(data = pred_df, aes(x = log_km_driven, y = predictions, color = owner))
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Fitting MLR Models

• Create models with the different slopes and intercepts

owner_fits_full <- lm(log_selling_price ~ owner*log_km_driven, data = bike_data)
coef(owner_fits_full)

##                  (Intercept)               owner2nd owner 
##                  14.55347484                   0.63862406 
##               owner3rd owner               owner4th owner 
##                   0.82280649                   2.31991467 
##                log_km_driven owner2nd owner:log_km_driven 
##                  -0.38219492                  -0.06871037 
## owner3rd owner:log_km_driven owner4th owner:log_km_driven 
##                  -0.07295150                  -0.19192122
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Fitting MLR Models

• Plot our different intercept models

ggplot(bike_data, aes(x = log_km_driven, y = log_selling_price, color = owner)) +
  geom_point() + 
  geom_smooth(method = "lm", se = FALSE)
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Choosing an MLR Model

• Given a bunch of predictors, tons of models you could fit! How to choose?

• Many variable selection methods exist...

• If you care mainly about prediction, just use cross-validation or training/test split!

◦ Compare predictions using some metric!

◦ We'll see how to use tidymodels  to do this in a coherent way shortly!
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Recap

• Multiple Linear Regression models are a common model used for a numeric response

• Generally fit via minimizing the sum of squared residuals or errors

◦ Could fit using sum of absolute deviation, or other metric

• Can include polynomial terms, interaction terms, and categorical variables

• Good metric to compare models with a continuous response is the RMSE
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