Multiple Linear Regression Models

Justin Post



Recap

Given a model, we fit the model using data

e Must determine how well the model predicts on new data
e Create a test set or use CV
» Judge effectiveness using a metric on predictions made from the model
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Regression Modeling Ideas

For a set of observations vy, . . . , Y,, We may want to predict a future value

o Often use the sample mean to do so, § (an estimate of E(Y"))
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Regression Modeling Ideas

For a set of observations vy, . . . , Y,, We may want to predict a future value
o Often use the sample mean to do so, § (an estimate of E(Y"))

Now consider having pairs (acl, yl), (wz, yz), e (fEn, yn)

Below: Blue line, f(x), is the 'true’ relationship between x and y
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Regression Modeling Ideas

Often use a linear (in the parameters) model for prediction

SLR model: E(Y|x) = By + b1z

Below: Blue line, f(x), is the "true’ relationship between x and y

— SLRfit
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Regression Modeling Ideas

Can include more terms on the right hand side (RHS)

Multiple Linear Regression Model: E(Y|z) = By + fiz + Box?

Below: Blue line, f(x), is the "true’ relationship between x and y
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Regression Modeling Ideas

Can include more terms on the right hand side (RHS)

Multiple Linear Regression Model: E(Y|z) = By + Bix + Box”® + Bax®

Below: Blue line, f(x), is the "true’ relationship between x and y
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— SLRfit
—— Quad fit
—— Cubic fit
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Regression Modeling Ideas

e We model the mean response for a given  value
e With multiple predictors or x's, we do the same idea!
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Regression Modeling Ideas

e Including a main effect for two predictors fits the best plane through the data

Multiple Linear Regression Model: E(Y |z1,z2) = By + B1x1 + Boxo

x1

9/37



Regression Modeling Ideas

e Including main effects and an interaction effect allows for a more flexible surface

Multiple Linear Regression Model: E(Y|z1,x2) = By + B1x1 + Boxs + B3xixo
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Regression Modeling Ideas

e Including main effects and an interaction effect allows for a more flexible surface
 Interaction effects allow for the effect of one variable to depend on the value of another
e Model fit previously gives

o ¢ =(19.005) + (-0.791)x1 + (5.631)x2 + (-12.918)x1x2
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Regression Modeling Ideas

e Including main effects and an interaction effect allows for a more flexible surface
 Interaction effects allow for the effect of one variable to depend on the value of another
e Model fit previously gives

o ¢ =(19.005) + (-0.791)x1 + (5.631)x2 + (-12.918)x1x2

o For 1 =0, the slope on x5 is (5.631)+0* (-12.918) = 5.631
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Regression Modeling Ideas

e Including main effects and an interaction effect allows for a more flexible surface
 Interaction effects allow for the effect of one variable to depend on the value of another
e Model fit previously gives

o ¢ =(19.005) + (-0.791)x1 + (5.631)x2 + (-12.918)x1x2

o For 1 =0, the slope on x5 is (5.631)+0* (-12.918) = 5.631

o For 1 = 0.5, the slope on x5 is (5.631)+0.5%(-12.918) = -0.828
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Regression Modeling Ideas

Including main effects and an interaction effect allows for a more flexible surface

Interaction effects allow for the effect of one variable to depend on the value of another

Model fit previously gives
o ¢ =(19.005) + (-0.791)x1 + (5.631)x2 + (-12.918)x1x2
o For 1 =0, the slope on x5 is (5.631)+0* (-12.918) = 5.631
o For 1 = 0.5, the slope on x5 is (5.631)+0.5%(-12.918) = -0.828
o For x1 =1, the slope on x5 is (5.631)+1x(-12.918) = -7.286

Similarly, the slope on x; depends on x5!
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Regression Modeling Ideas

e Including main effects and an interaction effect allows for a more flexible surface
e Can also include higher order polynomial terms

Multiple Linear Regression Model: E(Y|z1,x2) = By + S1x1 + Bo2xs + B3z + ﬁ4w%

X2

5 08 . Data with complicated surface fit

04 0.
2g a2
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Regression Modeling Ideas

Can also include categorical variables through dummy or indicator variables

e Categorical variable with value of Success and Failure
e Define x5 = 0 if variable is F'ailure
e Define xo = 1 if variable is Success
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Regression Modeling Ideas

Can also include categorical variables through dummy or indicator variables

e Categorical variable with value of Success and Failure
e Define x5 = 0 if variable is F'ailure
e Define xo = 1 if variable is Success

Plot of x vs y with Color by x2

x1
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Regression Modeling Ideas

e Define x5 = 0 if variable is F'azlure
e Define xo = 1 if variable is Success

Separate Intercept Model: E(Y |z) = By + B1x1 + Boxo

Plot of x vs y with Color by x2

—— Fitwhenx2 =1
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Regression Modeling Ideas

e Define x5 = 0 if variable is F'azlure
e Define xo = 1 if variable is Success

Separate Intercept and Slopes Model: E(Y|x) = By + B1x1 + P2xs + Bsr122

Plot of x vs y with Color by x2

0 QJ — Fitwhenx2=1
R —— Fitwhenx2=0

x1

19/ 37



Regression Modeling Ideas

0 if variable is F'ailure
1 if variable is Success

e Define a9
e Define a9

Separate Quadratics Model: E(Y|z) = By + Biza + Box1 + Bsz1xs + Bax? + Bsxizs

Plot of x vs y with Color by x2

o 0% —— Fitwhenx2 =1
®e 9009 o o —— Fitwhenx2=0
ey eod® Q@

x1
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Regression Modeling Ideas

If your categorical variable has more than k>2 categories, define k-1 dummy variables

o Categorical variable with values of "Assistant", "Contractor"”, "Executive"
Define x5 = 0 if variable is Executive or Contractor

Define x5 = 1 if variable is Assistant

Define x3 = 0 if variable is Contractor or Assistant

Define x3 = 1 if variable is Fxecutive
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Regression Modeling Ideas

If your categorical variable has more than k>2 categories, define k-1 dummy variables

Categorical variable with values of "Assistant”, "Contractor”, "Executive"
Define x5 = 0 if variable is Executive or Contractor

Define x5 = 1 if variable is Assistant

Define x3 = 0 if variable is Contractor or Assistant

Define x3 = 1 if variable is Fxecutive

Separate Intercepts Model: E(Y|x) = By + 121 + Baxa + P3xs

What is implied if o and x5 are both zero?
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Fitting an MLR Model

Big Idea: Trying to find the line, plane, saddle, etc. of best fit through points
e How do we do the fit??

o Usually minimize the sum of squared residuals (errors)
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Fitting an MLR Model

Big Idea: Trying to find the line, plane, saddle, etc. of best fit through points
e How do we do the fit??
o Usually minimize the sum of squared residuals (errors)

e Residual = observed - predicted or y; — ?)Z-

n

rr}in (yz — (BO -+ B1$1i+- . +Bp37pi))2
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Fitting an MLR Model

Big Idea: Trying to find the line, plane, saddle, etc. of best fit through points
e How do we do the fit??
o Usually minimize the sum of squared residuals (errors)

e Residual = observed - predicted or y; — ?)Z-

n

min » (y; — (By + B121i+- - +Bpwpi))2

Bs i=1

e Closed-form results exist for easy calculation via software!
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Fitting a Linear Regression Model in R

e Use 1Im() and specify a formula: LHS ~ RHS
o y ~ implies y is modelled by a linear function of the RHS

o RHS consists of terms separated by + operators

=y ~ x1 + x2 gives E(Y\CL‘1,SE2) = Bo + fiz1 + B2z
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Fitting a Linear Regression Model in R

e Use 1Im() and specify a formula: LHS ~ RHS
o y ~ implies y is modelled by a linear function of the RHS
o RHS consists of terms separated by + operators
= y ~ x1 + x2 gives E(Y\a;l,a:z) = Bo + B1x1 + PBoxs

= : for interactions, y ~ x1 + x2 + x1:x2 gives
E(Y|z1,23) = Bo + f1z1 + Baz2 + B37122
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Fitting a Linear Regression Model in R

e Use 1Im() and specify a formula: LHS ~ RHS
o y ~ implies y is modelled by a linear function of the RHS
o RHS consists of terms separated by + operators
= y ~ x1 + x2 gives E(Y\wl,mg) = Bo + B1x1 + PBoxs

= : for interactions, y ~ x1 + x2 + x1*x2 gives
E(Y|z1,22) = Bo + f1z1 + B2z + B33

= x denotes factor crossing: a*b is interpreted as a + b + a:b

= y ~ x - 1 removes the intercept term
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Fitting a Linear Regression Model in R

e Use 1Im() and specify a formula: LHS ~ RHS
o y ~ implies y is modelled by a linear function of the RHS
o RHS consists of terms separated by + operators
= y ~ x1 + x2 gives E(Y\wl,mg) = Bo + B1x1 + PBoxs

= : for interactions, y ~ x1 + x2 + x1*x2 gives
E(Y|z1,22) = Bo + f1z1 + B2z + B33

= x denotes factor crossing: a*b is interpreted as a + b + a:b
= y ~ x - 1removes the intercept term
= I() can be used to create arithmetic predictors

» y ~ a + I(b+c) implies b+c is the sum of b and c

m y ~ x + I(x*2) implies E(Y\:cl) = Bp + B1x1 + 5233% 29 /37



Fitting MLR Models

library(tidyverse)

bike_data <- read_csv("https://www4.stat.ncsu.edu/~online/datasets/bikeDetails.csv")

bike_data <- bike_data |>
mutate(log_selling_price = log(selling_price),
log(km_driven)) |>
select(log_km_driven, year, log_selling_price, owner, everything())

log_km_driven

bike_data

## # A tibble: 1,061 x 9
##  log_km_driven year
## <dbl> <dbl>
## 1 5.86 2019
## 2 8.64 2017
## 3 9.39 2018
## 4 10.0 2015
## 5 9.95 2011
## # 1 1,056 more rows
## i 2

log_selling_price
<dbl>

12.1

10.7

11.9

11.1
9.90

owner
<chr>

1st
1st
1st
1st
2nd

own-~
own-~
own-~
own-~
own-~

name
<chr>
Roya~
Hond~
Roya~
Yama~
Yama~

e Let'sread in our bike_data and fit some MLR models

selling_price
<dbl>

175000

45000

150000

65000

20000

more variables: km_driven <dbl>, ex_showroom_price <dbl>

seller_type
<chr>
Individual
Individual
Individual
Individual
Individual
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Fitting MLR Models

» Create models with the same slope but intercepts differing by a categorical variable

owner_fits <- Im(log_selling_price ~ owner + log_km_driven, data = bike_data)
coef(owner_fits)

#i#t (Intercept) owner2nd owner owner3rd owner owner4th owner log_km_driven
## 14.62423775 -0.06775874 0.08148045 0.20110313 -0.38930862
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Fitting MLR Models

o Create a data frame for plotting

x_values <- seq(from

pred_df <- data.frame(log_km_driven = rep(x_values, 4),
owner", 2),
owner", 2),
owner", 2),
owner", 2)))

min(bike_data$log_km_driven),
to = max(bike_data$log_km_driven),

length = 2)

pred_df <- pred_df |>

mutate(predictions
pred_df

##  log_km_driven
#H 1 5.857933 1st
##H 2 13.687677 1st
## 3 5.857933 2nd
## 4 13.687677 2nd
## 5 5.857933 3rd
## 6 13.687677 3rd
## 7 5.857933 4th
## 8 13.687677 4th

owner

predict(owner_fits, newdata

c(rep("1st
rep("2nd
rep("3rd
rep("4th

owner predictions

owner
owner
owner
owner
owner
owner
owner
owner

12.
9.
12.
9.
12.
9.
12.
9.

343694
295507
275935
227748
425174
376987
544797
496610

pred_df))
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Fitting MLR Models

 Plot our different intercept models

ggplot(bike_data, aes(x = log_km_driven, y = log_selling_price, color = owner)) +
geom_point() +

geom_line(data = pred_df, aes(x = log_km_driven, y = predictions, color = owner))

owner
~o- 1st owner
—e— 2nd owner

~e- 3rd owner

log_selling_price

~o~ 4th owner

log_km_driven | | 33 / 37



Fitting MLR Models

e Create models with the different slopes and intercepts

owner_fits_full <- 1m(log_selling_price ~ owner*log_km_driven, data

coef (owner_fits_full)

#it
#i#
#it
#it
#i#
#it
#it
#i#

(Intercept)
14.55347484
owner3rd owner
0.82280649

owner2nd owner
0.63862406
owner4th owner
2.31991467

log_km_driven owner2nd owner:log_km_driven

-0.38219492

-0.06871037

owner3rd owner:log_km_driven owner4th owner:log_km_driven

-0.07295150

-0.19192122

bike_data)

34 /37



Fitting MLR Models

 Plot our different intercept models

ggplot(bike_data, aes(x = log_km_driven, y = log_selling_price, color = owner)) +
geom_point() +

geom_smooth(method = "1Im", se = FALSE)

owner
== 1st owner
=e= 2nd owner

== 3rd owner

log_selling_price

== 4th owner

log_km_driven | | 35 / 37



Choosing an MLR Model

e Given a bunch of predictors, tons of models you could fit! How to choose?

e Many variable selection methods exist...

e If you care mainly about prediction, just use cross-validation or training/test split!
o Compare predictions using some metric!

o We'll see how to use tidymodels to do this in a coherent way shortly!
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Recap

Multiple Linear Regression models are a common model used for a numeric response

Generally fit via minimizing the sum of squared residuals or errors

o Could fit using sum of absolute deviation, or other metric

Can include polynomial terms, interaction terms, and categorical variables

Good metric to compare models with a continuous response is the RMSE
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