
Logistic Regression Models
Justin Post

1 / 32

Logistic Regression Model

Used when you have a binary response variable (a Classification task)

• Consider just a binary response

◦ What is the mean of the response?

2 / 32

Logistic Regression Model

Suppose you have a predictor variable as well, call it

• Given two values of we could model separate proportions

x

x

E(Y |x = x1) = P(Y = 1|x = x1)

E(Y |x = x2) = P(Y = 1|x = x2)

3 / 32

Logistic Regression Model

Suppose you have a predictor variable as well, call it

• Given two values of we could model separate proportions

• For a continuous , we could consider a SLR model

x

x

E(Y |x = x1) = P(Y = 1|x = x1)

E(Y |x = x2) = P(Y = 1|x = x2)

x

E(Y |x) = P(Y = 1|x) = β0 + β1x

4 / 32

Linear Regression Isn't Appropriate

• Consider data about heart disease

lliibbrraarryy(tidyverse)
heart_data <- read_csv("https://www4.stat.ncsu.edu/online/datasets/heart.csv") |>
 filter(RestingBP > 0) #remove one value
heart_data |> select(HeartDisease, everything()) #Cholesterol has many values set to 0 so we ignore that

A tibble: 917 x 12
HeartDisease Age Sex ChestPainType RestingBP Cholesterol FastingBS
<dbl> <dbl> <chr> <chr> <dbl> <dbl> <dbl>
1 0 40 M ATA 140 289 0
2 1 49 F NAP 160 180 0
3 0 37 M ATA 130 283 0
4 1 48 F ASY 138 214 0
5 0 54 M NAP 150 195 0
i 912 more rows
i 5 more variables: RestingECG <chr>, MaxHR <dbl>, ExerciseAngina <chr>,
Oldpeak <dbl>, ST_Slope <chr>

5 / 32

https://www4.stat.ncsu.edu/online/datasets/heart.csv
https://www4.stat.ncsu.edu/online/datasets/heart.csv

Potability Summary

• Summarize heart disease prevalence

heart_data |>
 group_by(HeartDisease) |>
 summarize(count = n())

A tibble: 2 x 2
HeartDisease count
<dbl> <int>
1 0 410
2 1 507

heart_data |>
 group_by(HeartDisease) |>
 summarize(mean_Age = mean(Age),
 mean_RestingBP = mean(RestingBP))

A tibble: 2 x 3
HeartDisease mean_Age mean_RestingBP
<dbl> <dbl> <dbl>
1 0 50.6 130.
2 1 55.9 134.

6 / 32

Linear Regression Isn't Appropriate

ggplot(heart_data, aes(x = Age, y = HeartDisease, color = RestingBP)) +
 geom_point() +
 geom_smooth(method = "lm")

7 / 32

Linear Regression Isn't Appropriate

ggplot(heart_data, aes(x = Age, y = HeartDisease, color = RestingBP)) +
 geom_jitter() +
 geom_smooth(method = "lm")

8 / 32

Linear Regression Isn't Appropriate

Obtain proportion with heart disease for different age groups

Age_x <- seq(from = min(heart_data$Age), to = max(heart_data$Age), length = 20)
heart_data_grouped <- heart_data |>
 mutate(Age_groups = cut(Age, breaks = Age_x)) |>
 group_by(Age_groups) |>
 summarize(HeartDisease_mean = mean(HeartDisease), counts = n())
heart_data_grouped

A tibble: 20 x 3
Age_groups HeartDisease_mean counts
<fct> <dbl> <int>
1 (28,30.6] 0 4
2 (30.6,33.2] 0.444 9
3 (33.2,35.7] 0.333 18
4 (35.7,38.3] 0.424 33
5 (38.3,40.9] 0.286 28
6 (40.9,43.5] 0.303 66
7 (43.5,46.1] 0.361 61
8 (46.1,48.6] 0.52 50
9 (48.6,51.2] 0.494 81
10 (51.2,53.8] 0.493 69
11 (53.8,56.4] 0.550 129
12 (56.4,58.9] 0.675 80
13 (58.9,61.5] 0.745 98
14 (61.5,64.1] 0.724 87
15 (64.1,66.7] 0.647 34
16 (66.7,69.3] 0.737 38

9 / 32

Linear Regression Isn't Appropriate

ggplot(data = heart_data, aes(x = Age, y = HeartDisease)) +
 geom_jitter(aes(color = RestingBP)) +
 geom_point(data = heart_data_grouped, aes(x = Age_x, y = HeartDisease_mean, size = counts)) +
 geom_smooth(method = "lm", color = "Green")

10 / 32

Logistic Regression

• Response = success/failure, then modeling average number of successes for a given is a
probability!

◦ predictions should never go below 0
◦ predictions should never go above 1

• Basic Logistic Regression models success probability using the logistic function

x

P(Y = 1|x) = P(success|x) =
eβ0+β1x

1 + eβ0+β1x

11 / 32

Logistic Regression

P(Y = 1|x) = P(success|x) =
eβ0+β1x

1 + eβ0+β1x

12 / 32

Logistic Regression

• The logistic regression model doesn't have a closed form solution (maximum likelihood
often used to fit parameters)

P(Y = 1|x) = P(success|x) =
eβ0+β1x

1 + eβ0+β1x

13 / 32

Logistic Regression

• The logistic regression model doesn't have a closed form solution (maximum likelihood
often used to fit parameters)

• Back-solving shows the logit or log-odds of success is linear in the parameters

P(Y = 1|x) = P(success|x) =
eβ0+β1x

1 + eβ0+β1x

log () = β0 + β1x
P(success|x)

1 − P(success|x)

14 / 32

Logistic Regression

• The logistic regression model doesn't have a closed form solution (maximum likelihood
often used to fit parameters)

• Back-solving shows the logit or log-odds of success is linear in the parameters

• Coefficient interpretation changes greatly from linear regression model!

• represents a change in the log-odds of success

P(Y = 1|x) = P(success|x) =
eβ0+β1x

1 + eβ0+β1x

log () = β0 + β1x
P(success|x)

1 − P(success|x)

β1

15 / 32

Logistic Regression Fit

Using Age to predict HeartDisease via a logistic regression model:

16 / 32

Logistic Regression Fit

A sigmoid function that looks linear close up!

17 / 32

Logistic Regression

As with linear regression, we can include multiple predictors and interaction terms!

• Adding a dummy variable corresponding to a binary variable just changes the 'intercept'

18 / 32

Logistic Regression

As with linear regression, we can include multiple predictors and interaction terms!

• Not a constant shift

19 / 32

Interaction Terms Can Be Included

• If we fit an interaction term with our dummy variable, we essentially fit two separate
logistic regression models

• Can also include more than one numeric predictor

◦ Difficult to visualize!

• Adding in polynomial terms increases flexibility as well!

20 / 32

Selecting a Model

• Recall we can use k-fold CV as a proxy for test set error if we don't want to split the data

• Metric to quantify prediction quality? Basic measures:

◦ Accuracy:

◦ Misclassification Rate:

of correct classifications
Total # of classifications

of incorrect classifications
Total # of classifications

21 / 32

Selecting a Model

• Recall we can use k-fold CV as a proxy for test set error if we don't want to split the data

• Metric to quantify prediction quality? Basic measures:

◦ Accuracy:

◦ Misclassification Rate:

◦ Log-loss: For each observation (y = 0 or 1),

of correct classifications
Total # of classifications

of incorrect classifications
Total # of classifications

−(ylog(p̂) + (1 − y)log(1 − p̂))

22 / 32

Using tidymodels to Fit a Logistic Regression Model

• First, we'll do a training/test split via initial_split()
• Let's also create our CV splits on the training data

lliibbrraarryy(tidymodels)
set.seed(3557)
heart_data <- heart_data |> mutate(HeartDisease = factor(HeartDisease))
heart_split <- initial_split(heart_data, prop = 0.8)
heart_train <- training(heart_split)
heart_test <- testing(heart_split)
heart_CV_folds <- vfold_cv(heart_train, 10)

23 / 32

Using tidymodels to Fit a Logistic Regression Model

• Next, we'll set up our recipes for the data, standardizing these numeric variables

◦ Model 1: Age and Sex as predictors
◦ Model 2: Age , Sex , ChestPainType , RestingBP and RestingECG as predictors
◦ Model 3: Age , Sex , ChestPainType , RestingBP , RestingECG , MaxHR , and ExerciseAngina

LR1_rec <- recipe(HeartDisease ~ Age + Sex,
 data = heart_train) |>
 step_normalize(Age) |>
 step_dummy(Sex)
LR2_rec <- recipe(HeartDisease ~ Age + Sex + ChestPainType + RestingBP + RestingECG,
 data = heart_train) |>
 step_normalize(all_numeric(), -HeartDisease) |>
 step_dummy(Sex, ChestPainType, RestingECG)
LR3_rec <- recipe(HeartDisease ~ Age + Sex + ChestPainType + RestingBP + RestingECG + MaxHR + ExerciseAngina,
 data = heart_train) |>
 step_normalize(all_numeric(), -HeartDisease) |>
 step_dummy(Sex, ChestPainType, RestingECG, ExerciseAngina)
LR3_rec |> prep(heart_train) |> bake(heart_train) |> colnames()

[1] "Age" "RestingBP" "MaxHR"
[4] "HeartDisease" "Sex_M" "ChestPainType_ATA"
[7] "ChestPainType_NAP" "ChestPainType_TA" "RestingECG_Normal"
[10] "RestingECG_ST" "ExerciseAngina_Y" 24 / 32

Using tidymodels to Fit a Logistic Regression Model

• Now set up our model type and engine

LR_spec <- logistic_reg() |>
 set_engine("glm")

25 / 32

Using tidymodels to Fit a Logistic Regression Model

• Create our workflows

LR1_wkf <- workflow() |>
 add_recipe(LR1_rec) |>
 add_model(LR_spec)
LR2_wkf <- workflow() |>
 add_recipe(LR2_rec) |>
 add_model(LR_spec)
LR3_wkf <- workflow() |>
 add_recipe(LR3_rec) |>
 add_model(LR_spec)

26 / 32

Using tidymodels to Fit a Logistic Regression Model

• Fit to our CV folds!

LR1_fit <- LR1_wkf |>
 fit_resamples(heart_CV_folds, metrics = metric_set(accuracy, mn_log_loss))
LR2_fit <- LR2_wkf |>
 fit_resamples(heart_CV_folds, metrics = metric_set(accuracy, mn_log_loss))
LR3_fit <- LR3_wkf |>
 fit_resamples(heart_CV_folds, metrics = metric_set(accuracy, mn_log_loss))

27 / 32

Using tidymodels to Fit a Logistic Regression Model

• Collect our metrics and see which model did the best!

rbind(LR1_fit |> collect_metrics(),
 LR2_fit |> collect_metrics(),
 LR3_fit |> collect_metrics()) |>
 mutate(Model = c("Model1", "Model1", "Model2", "Model2", "Model3", "Model3")) |>
 select(Model, everything())

A tibble: 6 x 7
Model .metric .estimator mean n std_err .config
<chr> <chr> <chr> <dbl> <int> <dbl> <chr>
1 Model1 accuracy binary 0.689 10 0.0235 Preprocessor1_Model1
2 Model1 mn_log_loss binary 0.606 10 0.0246 Preprocessor1_Model1
3 Model2 accuracy binary 0.768 10 0.0178 Preprocessor1_Model1
4 Model2 mn_log_loss binary 0.499 10 0.0268 Preprocessor1_Model1
5 Model3 accuracy binary 0.783 10 0.0144 Preprocessor1_Model1
6 Model3 mn_log_loss binary 0.456 10 0.0204 Preprocessor1_Model1

#compare to proportion of 1's in training data
mean(heart_train$HeartDisease == "1")

[1] 0.5607094

28 / 32

Using tidymodels to Fit a Logistic Regression Model

• Find the confusion matrix for our best model on the training set

LR_train_fit <- LR3_wkf |>
 fit(heart_train)
conf_mat(heart_train |> mutate(estimate = LR_train_fit |> predict(heart_train) |> pull()), #data
 HeartDisease, #truth
 estimate) #estimate from model

Truth
Prediction 0 1
0 242 69
1 80 342

29 / 32

Using tidymodels to Fit a Logistic Regression Model

• Grab our 'best' model and test it on the test set

LR3_wkf |>
 last_fit(heart_split, metrics = metric_set(accuracy, mn_log_loss)) |>
 collect_metrics()

A tibble: 2 x 4
.metric .estimator .estimate .config
<chr> <chr> <dbl> <chr>
1 accuracy binary 0.810 Preprocessor1_Model1
2 mn_log_loss binary 0.409 Preprocessor1_Model1

conf_mat(heart_test |> mutate(estimate = LR_train_fit |> predict(heart_test) |> pull()), HeartDisease, estimate)

Truth
Prediction 0 1
0 63 10
1 25 86

30 / 32

Using tidymodels to Fit a Logistic Regression Model

• Suppose we like this model the best overall, we'd fit it to the entire data set

final_model <- LR3_wkf |>
 fit(heart_data)
tidy(final_model)

A tibble: 11 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -0.468 0.281 -1.67 9.56e- 2
2 Age 0.324 0.103 3.13 1.74e- 3
3 RestingBP 0.0877 0.0931 0.942 3.46e- 1
4 MaxHR -0.363 0.105 -3.48 5.09e- 4
5 Sex_M 1.34 0.230 5.84 5.27e- 9
6 ChestPainType_ATA -2.31 0.274 -8.43 3.33e-17
7 ChestPainType_NAP -1.51 0.215 -7.02 2.17e-12
8 ChestPainType_TA -0.937 0.360 -2.60 9.24e- 3
9 RestingECG_Normal -0.113 0.233 -0.486 6.27e- 1
10 RestingECG_ST -0.0737 0.294 -0.250 8.02e- 1
11 ExerciseAngina_Y 1.51 0.201 7.50 6.37e-14

31 / 32

Recap

• Logistic regression often a reasonable model for a binary response

• Uses a sigmoid function to ensure valid predictions

• Can predict success or failure using estimated probabilities

◦ Usually predict success if probability 0.5

◦ Common metrics for classification are accuracy and log-loss

>

32 / 32

