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Logistic Regression Model

Used when you have a binary response variable (a Classification task)

• Consider just a binary response

◦ What is the mean of the response?
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Logistic Regression Model

Suppose you have a predictor variable as well, call it 

• Given two values of  we could model separate proportions

x

x

E(Y |x = x1) = P(Y = 1|x = x1)

E(Y |x = x2) = P(Y = 1|x = x2)
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Logistic Regression Model

Suppose you have a predictor variable as well, call it 

• Given two values of  we could model separate proportions

• For a continuous , we could consider a SLR model

x

x

E(Y |x = x1) = P(Y = 1|x = x1)

E(Y |x = x2) = P(Y = 1|x = x2)

x

E(Y |x) = P(Y = 1|x) = β0 + β1x
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Linear Regression Isn't Appropriate

• Consider data about heart disease

lliibbrraarryy(tidyverse)
heart_data <- read_csv("https://www4.stat.ncsu.edu/online/datasets/heart.csv") |>
  filter(RestingBP > 0) #remove one value
heart_data |> select(HeartDisease, everything()) #Cholesterol has many values set to 0 so we ignore that

## # A tibble: 917 x 12
##   HeartDisease   Age Sex   ChestPainType RestingBP Cholesterol FastingBS
##          <dbl> <dbl> <chr> <chr>             <dbl>       <dbl>     <dbl>
## 1            0    40 M     ATA                 140         289         0
## 2            1    49 F     NAP                 160         180         0
## 3            0    37 M     ATA                 130         283         0
## 4            1    48 F     ASY                 138         214         0
## 5            0    54 M     NAP                 150         195         0
## # i 912 more rows
## # i 5 more variables: RestingECG <chr>, MaxHR <dbl>, ExerciseAngina <chr>,
## #   Oldpeak <dbl>, ST_Slope <chr>

5 / 32

https://www4.stat.ncsu.edu/online/datasets/heart.csv
https://www4.stat.ncsu.edu/online/datasets/heart.csv


Potability Summary

• Summarize heart disease prevalence

heart_data |>
  group_by(HeartDisease) |> 
  summarize(count = n())

## # A tibble: 2 x 2
##   HeartDisease count
##          <dbl> <int>
## 1            0   410
## 2            1   507

heart_data |>
  group_by(HeartDisease) |>
  summarize(mean_Age = mean(Age),
            mean_RestingBP  = mean(RestingBP))

## # A tibble: 2 x 3
##   HeartDisease mean_Age mean_RestingBP
##          <dbl>    <dbl>          <dbl>
## 1            0     50.6           130.
## 2            1     55.9           134.
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Linear Regression Isn't Appropriate

ggplot(heart_data, aes(x = Age, y = HeartDisease, color = RestingBP)) +
         geom_point() +
  geom_smooth(method = "lm")
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Linear Regression Isn't Appropriate

ggplot(heart_data, aes(x = Age, y = HeartDisease, color = RestingBP)) +
         geom_jitter() +
  geom_smooth(method = "lm")
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Linear Regression Isn't Appropriate

Obtain proportion with heart disease for different age groups

Age_x <- seq(from = min(heart_data$Age), to = max(heart_data$Age), length = 20)
heart_data_grouped <- heart_data |>
  mutate(Age_groups = cut(Age, breaks = Age_x)) |>
  group_by(Age_groups) |>
  summarize(HeartDisease_mean = mean(HeartDisease), counts = n())
heart_data_grouped

## # A tibble: 20 x 3
##    Age_groups  HeartDisease_mean counts
##    <fct>                   <dbl>  <int>
##  1 (28,30.6]               0          4
##  2 (30.6,33.2]             0.444      9
##  3 (33.2,35.7]             0.333     18
##  4 (35.7,38.3]             0.424     33
##  5 (38.3,40.9]             0.286     28
##  6 (40.9,43.5]             0.303     66
##  7 (43.5,46.1]             0.361     61
##  8 (46.1,48.6]             0.52      50
##  9 (48.6,51.2]             0.494     81
## 10 (51.2,53.8]             0.493     69
## 11 (53.8,56.4]             0.550    129
## 12 (56.4,58.9]             0.675     80
## 13 (58.9,61.5]             0.745     98
## 14 (61.5,64.1]             0.724     87
## 15 (64.1,66.7]             0.647     34
## 16 (66.7,69.3]             0.737     38
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Linear Regression Isn't Appropriate

ggplot(data = heart_data, aes(x = Age, y = HeartDisease)) +
  geom_jitter(aes(color = RestingBP)) +
  geom_point(data = heart_data_grouped, aes(x = Age_x, y = HeartDisease_mean, size = counts)) +
  geom_smooth(method = "lm", color = "Green")
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Logistic Regression

• Response = success/failure, then modeling average number of successes for a given  is a
probability!

◦ predictions should never go below 0
◦ predictions should never go above 1

• Basic Logistic Regression models success probability using the logistic function

x

P(Y = 1|x) = P(success|x) =
eβ0+β1x

1 + eβ0+β1x
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Logistic Regression

P(Y = 1|x) = P(success|x) =
eβ0+β1x

1 + eβ0+β1x
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Logistic Regression

• The logistic regression model doesn't have a closed form solution (maximum likelihood
often used to fit parameters)

P(Y = 1|x) = P(success|x) =
eβ0+β1x

1 + eβ0+β1x
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Logistic Regression

• The logistic regression model doesn't have a closed form solution (maximum likelihood
often used to fit parameters)

• Back-solving shows the logit or log-odds of success is linear in the parameters

P(Y = 1|x) = P(success|x) =
eβ0+β1x

1 + eβ0+β1x

log ( ) = β0 + β1x
P(success|x)

1 − P(success|x)
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Logistic Regression

• The logistic regression model doesn't have a closed form solution (maximum likelihood
often used to fit parameters)

• Back-solving shows the logit or log-odds of success is linear in the parameters

• Coefficient interpretation changes greatly from linear regression model!

•  represents a change in the log-odds of success

P(Y = 1|x) = P(success|x) =
eβ0+β1x

1 + eβ0+β1x

log ( ) = β0 + β1x
P(success|x)

1 − P(success|x)

β1
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Logistic Regression Fit

Using Age  to predict HeartDisease  via a logistic regression model:
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Logistic Regression Fit

A sigmoid function that looks linear close up!
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Logistic Regression

As with linear regression, we can include multiple predictors and interaction terms!

• Adding a dummy variable corresponding to a binary variable just changes the 'intercept'
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Logistic Regression

As with linear regression, we can include multiple predictors and interaction terms!

• Not a constant shift
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Interaction Terms Can Be Included

• If we fit an interaction term with our dummy variable, we essentially fit two separate
logistic regression models

• Can also include more than one numeric predictor

◦ Difficult to visualize!

• Adding in polynomial terms increases flexibility as well!
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Selecting a Model

• Recall we can use k-fold CV as a proxy for test set error if we don't want to split the data

• Metric to quantify prediction quality? Basic measures:

◦ Accuracy:

◦ Misclassification Rate:

# of correct classifications
Total # of classifications

# of incorrect classifications
Total # of classifications
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Selecting a Model

• Recall we can use k-fold CV as a proxy for test set error if we don't want to split the data

• Metric to quantify prediction quality? Basic measures:

◦ Accuracy:

◦ Misclassification Rate:

◦ Log-loss: For each observation (y = 0 or 1), 

# of correct classifications
Total # of classifications

# of incorrect classifications
Total # of classifications

−(ylog(p̂) + (1 − y)log(1 − p̂))

22 / 32



Using tidymodels to Fit a Logistic Regression Model

• First, we'll do a training/test split via initial_split()
• Let's also create our CV splits on the training data

lliibbrraarryy(tidymodels)
set.seed(3557)
heart_data <- heart_data |> mutate(HeartDisease = factor(HeartDisease))
heart_split <- initial_split(heart_data, prop = 0.8)
heart_train <- training(heart_split)
heart_test <- testing(heart_split)
heart_CV_folds <- vfold_cv(heart_train, 10)
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Using tidymodels to Fit a Logistic Regression Model

• Next, we'll set up our recipes for the data, standardizing these numeric variables

◦ Model 1: Age  and Sex  as predictors
◦ Model 2: Age , Sex , ChestPainType , RestingBP  and RestingECG  as predictors
◦ Model 3: Age , Sex , ChestPainType , RestingBP , RestingECG , MaxHR , and ExerciseAngina

LR1_rec <- recipe(HeartDisease ~ Age + Sex, 
                  data = heart_train) |>
  step_normalize(Age) |>
  step_dummy(Sex)
LR2_rec <- recipe(HeartDisease ~ Age + Sex + ChestPainType + RestingBP + RestingECG, 
                  data = heart_train) |>
  step_normalize(all_numeric(), -HeartDisease) |>
  step_dummy(Sex, ChestPainType, RestingECG)
LR3_rec <- recipe(HeartDisease ~ Age + Sex + ChestPainType + RestingBP + RestingECG + MaxHR + ExerciseAngina, 
                  data = heart_train) |>
  step_normalize(all_numeric(), -HeartDisease) |>
  step_dummy(Sex, ChestPainType, RestingECG, ExerciseAngina)
LR3_rec |> prep(heart_train) |> bake(heart_train) |> colnames()

##  [1] "Age"               "RestingBP"         "MaxHR"            
##  [4] "HeartDisease"      "Sex_M"             "ChestPainType_ATA"
##  [7] "ChestPainType_NAP" "ChestPainType_TA"  "RestingECG_Normal"
## [10] "RestingECG_ST"     "ExerciseAngina_Y" 24 / 32



Using tidymodels to Fit a Logistic Regression Model

• Now set up our model type and engine

LR_spec <- logistic_reg() |>
  set_engine("glm")
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Using tidymodels to Fit a Logistic Regression Model

• Create our workflows

LR1_wkf <- workflow() |>
  add_recipe(LR1_rec) |>
  add_model(LR_spec)
LR2_wkf <- workflow() |>
  add_recipe(LR2_rec) |>
  add_model(LR_spec)
LR3_wkf <- workflow() |>
  add_recipe(LR3_rec) |>
  add_model(LR_spec)
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Using tidymodels to Fit a Logistic Regression Model

• Fit to our CV folds!

LR1_fit <- LR1_wkf |>
  fit_resamples(heart_CV_folds, metrics = metric_set(accuracy, mn_log_loss))
LR2_fit <- LR2_wkf |>
  fit_resamples(heart_CV_folds, metrics = metric_set(accuracy, mn_log_loss))
LR3_fit <- LR3_wkf |>
  fit_resamples(heart_CV_folds, metrics = metric_set(accuracy, mn_log_loss))
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Using tidymodels to Fit a Logistic Regression Model

• Collect our metrics and see which model did the best!

rbind(LR1_fit |> collect_metrics(),
      LR2_fit |> collect_metrics(),
      LR3_fit |> collect_metrics()) |>
  mutate(Model = c("Model1", "Model1", "Model2", "Model2", "Model3", "Model3")) |>
  select(Model, everything())

## # A tibble: 6 x 7
##   Model  .metric     .estimator  mean     n std_err .config             
##   <chr>  <chr>       <chr>      <dbl> <int>   <dbl> <chr>               
## 1 Model1 accuracy    binary     0.689    10  0.0235 Preprocessor1_Model1
## 2 Model1 mn_log_loss binary     0.606    10  0.0246 Preprocessor1_Model1
## 3 Model2 accuracy    binary     0.768    10  0.0178 Preprocessor1_Model1
## 4 Model2 mn_log_loss binary     0.499    10  0.0268 Preprocessor1_Model1
## 5 Model3 accuracy    binary     0.783    10  0.0144 Preprocessor1_Model1
## 6 Model3 mn_log_loss binary     0.456    10  0.0204 Preprocessor1_Model1

#compare to proportion of 1's in training data
mean(heart_train$HeartDisease == "1")

## [1] 0.5607094
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Using tidymodels to Fit a Logistic Regression Model

• Find the confusion matrix for our best model on the training set

LR_train_fit <- LR3_wkf |>
  fit(heart_train)
conf_mat(heart_train |> mutate(estimate = LR_train_fit |> predict(heart_train) |> pull()), #data
         HeartDisease, #truth
         estimate) #estimate from model

##           Truth
## Prediction   0   1
##          0 242  69
##          1  80 342
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Using tidymodels to Fit a Logistic Regression Model

• Grab our 'best' model and test it on the test set

LR3_wkf |>
  last_fit(heart_split, metrics = metric_set(accuracy, mn_log_loss)) |>
  collect_metrics()

## # A tibble: 2 x 4
##   .metric     .estimator .estimate .config             
##   <chr>       <chr>          <dbl> <chr>               
## 1 accuracy    binary         0.810 Preprocessor1_Model1
## 2 mn_log_loss binary         0.409 Preprocessor1_Model1

conf_mat(heart_test |> mutate(estimate = LR_train_fit |> predict(heart_test) |> pull()), HeartDisease, estimate)

##           Truth
## Prediction  0  1
##          0 63 10
##          1 25 86
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Using tidymodels to Fit a Logistic Regression Model

• Suppose we like this model the best overall, we'd fit it to the entire data set

final_model <- LR3_wkf |>
  fit(heart_data)
tidy(final_model)

## # A tibble: 11 x 5
##    term              estimate std.error statistic  p.value
##    <chr>                <dbl>     <dbl>     <dbl>    <dbl>
##  1 (Intercept)        -0.468     0.281     -1.67  9.56e- 2
##  2 Age                 0.324     0.103      3.13  1.74e- 3
##  3 RestingBP           0.0877    0.0931     0.942 3.46e- 1
##  4 MaxHR              -0.363     0.105     -3.48  5.09e- 4
##  5 Sex_M               1.34      0.230      5.84  5.27e- 9
##  6 ChestPainType_ATA  -2.31      0.274     -8.43  3.33e-17
##  7 ChestPainType_NAP  -1.51      0.215     -7.02  2.17e-12
##  8 ChestPainType_TA   -0.937     0.360     -2.60  9.24e- 3
##  9 RestingECG_Normal  -0.113     0.233     -0.486 6.27e- 1
## 10 RestingECG_ST      -0.0737    0.294     -0.250 8.02e- 1
## 11 ExerciseAngina_Y    1.51      0.201      7.50  6.37e-14
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Recap

• Logistic regression often a reasonable model for a binary response

• Uses a sigmoid function to ensure valid predictions

• Can predict success or failure using estimated probabilities

◦ Usually predict success if probability  0.5

◦ Common metrics for classification are accuracy and log-loss

>

32 / 32


