Variable Splitting Methods

Eric Chi

January 15, 2016

Two Typical Problems

- Regularized estimation to get sparse solutions

$$
\hat{\theta}=\underset{\boldsymbol{\theta}}{\arg \min } \frac{1}{2}\|\mathbf{y}-\mathbf{X} \boldsymbol{\theta}\|_{2}^{2}+\lambda\|\boldsymbol{\theta}\|_{1}
$$

Arises in biomedical problems: genome wide association studies

Two Typical Problems

- Regularized estimation to get low-rank solutions

$$
\hat{\mathbf{Z}}=\underset{\mathbf{Z}}{\arg \min } \frac{1}{2}\|\mathbf{X}-\mathbf{Z}\|_{2}^{2}+\lambda\|\mathbf{Z}\|_{*}
$$

Arises in collaborative filtering: Netflix

Two Typical Problems

- Regularized estimation to get low-rank solutions

$$
\hat{\mathbf{Z}}=\underset{\mathbf{Z}}{\arg \min } \frac{1}{2}\|\mathbf{X}-\mathbf{Z}\|_{2}^{2}+\lambda\|\mathbf{Z}\|_{*}
$$

Arises in collaborative filtering: Netflix

The Generic Problem

$$
\hat{\theta}=\underset{\boldsymbol{\theta}}{\arg \min } \underbrace{L(\boldsymbol{\theta})}_{\text {Lack of fit }}+\underbrace{J(\boldsymbol{\theta})}_{\text {Complexity }}
$$

Reasons for success:

- Theory: Consistency and convergence rates when $n, p \rightarrow \infty$
- Computation: Fast and scalable algorithms for computing $\hat{\theta}$

The Generic Problem

$$
\hat{\theta}=\underset{\boldsymbol{\theta}}{\arg \min } \underbrace{L(\boldsymbol{\theta})}_{\text {Lack of fit }}+\underbrace{J(\mathrm{D} \boldsymbol{\theta})}_{\text {Complexity }}
$$

Reasons for success:

- Theory: Consistency and convergence rates when $n, p \rightarrow \infty$
- Computation: Fast and scalable algorithms for computing $\hat{\theta}$

What Variable Splitting Can Do For You

$$
\hat{\theta}=\underset{\boldsymbol{\theta}}{\arg \min } L(\boldsymbol{\theta})+J(\mathbf{D} \boldsymbol{\theta})
$$

Variable splitting is

- helpful when $J(\boldsymbol{\theta})$ is to work with but $J(\mathbf{D} \boldsymbol{\theta})$ is not.
- typically easy to derive and code
- e.g. Lasso solver in less than 10 lines of code.
- modestly accurate solutions in 10 s to 100 s of iterations.

Agenda

- Case Study: Convex Clustering I
- Variable Splitting
- ADMM
- AMA
- Case Study: Convex Clustering II
- Case Study: ADMM for Lasso

The Clustering Problem

Task:

- Given p points in q dimensions
- $\mathrm{X} \in \mathbb{R}^{q \times p}$
- group similar points together.

The Clustering Problem

Many approaches:

- k-means, mixture models
- Hierarchical clustering
- Spectral clustering, ...

The Clustering Problem

Computational Issues

- Nonconvex formulations
- Local minimizers
- Instability (initializations, tuning parameters, or data)

Convex Clustering

- Pelckmans et al. 2005, Lindsten et al. 2011, Hocking et al. 2011

$$
\underset{\mathbf{u}}{\operatorname{minimize}} \frac{1}{2} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{u}_{i}\right\|_{2}^{2}
$$

- Assign a centroid \mathbf{u}_{i} to each data point \mathbf{x}_{i}.

Convex Clustering

- Pelckmans et al. 2005, Lindsten et al. 2011, Hocking et al. 2011

$$
\underset{\mathbf{u}}{\operatorname{minimize}} \frac{1}{2} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{u}_{i}\right\|_{2}^{2}
$$

- Assign a centroid \mathbf{u}_{i} to each data point \mathbf{x}_{i}.

Too many degrees of freedom!

Convex Clustering

- Pelckmans et al. 2005, Lindsten et al. 2011, Hocking et al. 2011

$$
\underset{\mathbf{u}}{\operatorname{minimize}} \frac{1}{2} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{u}_{i}\right\|_{2}^{2}+\gamma \sum_{i<j} w_{i j}\left\|\mathbf{u}_{i}-\mathbf{u}_{j}\right\|_{2}
$$

- Assign a centroid \mathbf{u}_{i} to each data point \mathbf{x}_{i}.
- Convex Fusion Penalty
- shrinks cluster centroids together
- sparsity in pairwise differences of centroids

$$
\mathbf{u}_{i}-\mathbf{u}_{j}=\mathbf{0} \Longleftrightarrow \mathbf{x}_{i} \text { and } \mathbf{x}_{j} \text { belong to the same cluster }
$$

- γ : tunes overall amount of regularization
- $w_{i j}$: fine tunes pairwise shrinkage
- Generalizes fused lasso

The Solution Path

Two Interlocking Half-Moons

Senate Voting

Apparently Non-Trivial Optimization Problem

Why is this hard to solve?

$$
\operatorname{minimize} \frac{1}{2} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{u}_{i}\right\|_{2}^{2}+\gamma \sum_{i<j} w_{i j}\left\|\mathbf{u}_{i}-\mathbf{u}_{j}\right\|_{2}
$$

Apparently Non-Trivial Optimization Problem

Why is this hard to solve?

$$
\begin{gathered}
\operatorname{minimize} \frac{1}{2} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{u}_{i}\right\|_{2}^{2}+\gamma \sum_{i<j} w_{i j}\left\|\mathbf{u}_{i}-\mathbf{u}_{j}\right\|_{2} \\
\text { Nonsmooth? Not the issue }
\end{gathered}
$$

Apparently Non-Trivial Optimization Problem

Why is this hard to solve?

$$
\begin{gathered}
\operatorname{minimize} \frac{1}{2} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{u}_{i}\right\|_{2}^{2}+\gamma \sum_{i<j} w_{i j}\left\|\mathbf{u}_{i}-\mathbf{u}_{j}\right\|_{2} \\
\text { Affine transformation of } \mathbf{u}
\end{gathered}
$$

Apparently Non-Trivial Optimization Problem

Why is this hard to solve?

$$
\operatorname{minimize} \frac{1}{2} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{u}_{i}\right\|_{2}^{2}+\gamma \sum_{i<j} w_{i j}\left\|\mathbf{u}_{i}-\mathbf{u}_{j}\right\|_{2}
$$

General Recipe:

1. Introduce a dummy variable unconstrained \rightarrow equality constrained
2. Use iterative method to solve equality constrained version

Convex Clustering: Variable Split Version

$$
\begin{aligned}
& \operatorname{minimize} \frac{1}{2} \sum_{i=1}^{p}\left\|\mathbf{x}_{i}-\mathbf{u}_{i}\right\|_{2}^{2}+\gamma \sum_{l} w_{l}\left\|\mathbf{v}_{l}\right\| \\
& \text { subject to } \mathbf{u}_{1}-\mathbf{u}_{/ 2}-\mathbf{v}_{l}=\mathbf{0} \\
& I=\left(I_{1}, I_{2}\right) \text { with } I_{1}<I_{2} .
\end{aligned}
$$

Equality constrained optimization...

Convex Clustering: Variable Split Version

$$
\begin{aligned}
& \operatorname{minimize} \frac{1}{2} \sum_{i=1}^{p}\left\|\mathbf{x}_{i}-\mathbf{u}_{i}\right\|_{2}^{2}+\gamma \sum_{l} w_{l}\left\|\mathbf{v}_{l}\right\| \\
& \text { subject to } \mathbf{u}_{1}-\mathbf{u}_{l_{2}}-\mathbf{v}_{l}=\mathbf{0} \\
& I=\left(I_{1}, I_{2}\right) \text { with } I_{1}<I_{2} .
\end{aligned}
$$

Convex Clustering: Variable Split Version

$\operatorname{minimize} \frac{1}{2} \sum_{i=1}^{p}\left\|\mathbf{x}_{i}-\mathbf{u}_{i}\right\|_{2}^{2}+\gamma \sum_{l} w_{l}\left\|\mathbf{v}_{l}\right\|$
subject to $\mathbf{u}_{1}-\mathbf{u}_{l_{2}}-\mathbf{v}_{/}=\mathbf{0}$
$I=\left(I_{1}, I_{2}\right)$ with $I_{1}<I_{2}$.

Lagrange Multipliers

Lagrange Multipliers

$\operatorname{minimize} f(\mathbf{u})+g(\mathbf{v})$
subject to $\mathbf{A u}+\mathbf{B} \mathbf{v}=\mathbf{c}$,
$\mathcal{L}(\mathbf{u}, \mathbf{v}, \boldsymbol{\lambda})=f(\mathbf{u})+g(\mathbf{v})+\langle\boldsymbol{\lambda}, \mathbf{c}-\mathbf{A} \mathbf{u}-\mathbf{B} \mathbf{v}\rangle$

$$
\nabla \mathcal{L}\left(\mathbf{u}^{\star}, \mathbf{v}^{\star}, \boldsymbol{\lambda}^{\star}\right)=\mathbf{0} .
$$

$$
\left(\mathbf{u}^{\star}, \mathbf{v}^{\star}\right)=\underset{\mathbf{u}, \mathbf{v}}{\arg \min } \mathcal{L}\left(\mathbf{u}, \mathbf{v}, \boldsymbol{\lambda}^{\star}\right)
$$

Typically need to solve this iteratively.

Augmented Lagrangian Method

$$
\begin{aligned}
& \operatorname{minimize} f(\mathbf{u})+g(\mathbf{v}) \\
& \text { subject to } \mathbf{A u}+\mathbf{B} \mathbf{v}=\mathbf{c}
\end{aligned}
$$

ALM solves the equivalent problem

$$
\begin{aligned}
& \operatorname{minimize} f(\mathbf{u})+g(\mathbf{v})+\frac{\nu}{2}\|\mathbf{c}-\mathbf{A} \mathbf{u}-\mathbf{B} \mathbf{v}\|_{2}^{2} \\
& \text { subject to } \mathbf{A u}+\mathbf{B} \mathbf{v}=\mathbf{c}
\end{aligned}
$$

ALM: Augmented Lagrangian Method

ALM solves the equivalent problem

$$
\begin{aligned}
& \operatorname{minimize} f(\mathbf{u})+g(\mathbf{v})+\frac{\nu}{2}\|\mathbf{c}-\mathbf{A} \mathbf{u}-\mathbf{B} \mathbf{v}\|_{2}^{2}, \\
& \text { subject to } \mathbf{A} \mathbf{u}+\mathbf{B} \mathbf{v}=\mathbf{c}
\end{aligned}
$$

The Augmented Lagrangian

$$
\mathcal{L}_{\nu}(\mathbf{u}, \mathbf{v}, \boldsymbol{\lambda})=f(\mathbf{u})+g(\mathbf{v})+\langle\boldsymbol{\lambda}, \mathbf{c}-\mathbf{A} \mathbf{u}-\mathbf{B} \mathbf{v}\rangle+\frac{\nu}{2}\|\mathbf{c}-\mathbf{A} \mathbf{u}-\mathbf{B} \mathbf{v}\|_{2}^{2}
$$

ALM Updates

$$
\begin{aligned}
\left(\mathbf{u}^{m+1}, \mathbf{v}^{m+1}\right) & =\underset{\mathbf{u}, \mathbf{v}}{\arg \min } \mathcal{L}_{\nu}\left(\mathbf{u}, \mathbf{v}, \boldsymbol{\lambda}^{m}\right) \\
\boldsymbol{\lambda}^{m+1} & =\boldsymbol{\lambda}^{m}+\nu\left(\mathbf{c}-\mathbf{A} \mathbf{u}^{m+1}-\mathbf{B u}^{m+1}\right)
\end{aligned}
$$

ALM: Augmented Lagrangian Method

$$
\begin{aligned}
& \text { ALM Updates } \\
&\left(\mathbf{u}^{m+1}, \mathbf{v}^{m+1}\right)= \underset{\mathbf{u}, \mathbf{v}}{\arg \min } \mathcal{L}_{\nu}\left(\mathbf{u}, \mathbf{v}, \boldsymbol{\lambda}^{m}\right) \leftarrow \text { Often hard } \\
& \boldsymbol{\lambda}^{m+1}=\boldsymbol{\lambda}^{m}+\nu\left(\mathbf{c}-\mathbf{A} \mathbf{u}^{m+1}-\mathbf{B v}^{m+1}\right) .
\end{aligned}
$$

ALM: Augmented Lagrangian Method

$$
\begin{aligned}
& \text { ALM Updates } \\
&\left(\mathbf{u}^{m+1}, \mathbf{v}^{m+1}\right)=\underset{\mathbf{u}, \mathbf{v}}{\arg \min } \mathcal{L}_{\nu}\left(\mathbf{u}, \mathbf{v}, \boldsymbol{\lambda}^{m}\right) \leftarrow \text { Often hard } \\
& \boldsymbol{\lambda}^{m+1}=\boldsymbol{\lambda}^{m}+\nu\left(\mathbf{c}-\mathbf{A} \mathbf{u}^{m+1}-\mathbf{B} \mathbf{v}^{m+1}\right) .
\end{aligned}
$$

I. Alternating Direction Method of Multipliers (ADMM) (Gabay \& Mercier 1976, Glowinski \& Marrocco I975)
2. Alternating Minimization Algorithm (AMA)
(Tseng 1991)

ADMM: Alternating Direction Method of Multipliers

ALM Updates

$$
\begin{aligned}
\left(\mathbf{u}^{m+1}, \mathbf{v}^{m+1}\right) & =\underset{\mathbf{u}, \mathbf{v}}{\arg \min } \mathcal{L}_{\nu}\left(\mathbf{u}, \mathbf{v}, \boldsymbol{\lambda}^{m}\right) \leftarrow \text { Often hard } \\
\boldsymbol{\lambda}^{m+1} & =\boldsymbol{\lambda}^{m}+\nu\left(\mathbf{c}-\mathbf{A} \mathbf{u}^{m+1}-\mathbf{B}^{m+1}\right)
\end{aligned}
$$

ADMM Updates

$$
\begin{aligned}
& \mathbf{u}^{m+1}=\underset{\mathbf{u}}{\arg \min } \mathcal{L}_{\nu}\left(\mathbf{u}, \mathbf{v}^{m}, \boldsymbol{\lambda}^{m}\right) \\
& \mathbf{v}^{m+1}=\underset{\mathbf{v}}{\arg \min } \mathcal{L}_{\nu}\left(\mathbf{u}^{m+1}, \mathbf{v}, \boldsymbol{\lambda}^{m}\right) \\
& \boldsymbol{\lambda}^{m+1}=\boldsymbol{\lambda}^{m}+\nu\left(\mathbf{c}-\mathbf{A} \mathbf{u}^{m+1}-\mathbf{B}^{m+1}\right)
\end{aligned}
$$

Goal: Simpler algorithms

AMA: Alternating Minimization Algorithm

$$
\begin{aligned}
& \text { ALM Updates } \\
&\left(\mathbf{u}^{m+1}, \mathbf{v}^{m+1}\right)= \underset{\mathbf{u}, \mathbf{v}}{\arg \min } \mathcal{L}_{\nu}\left(\mathbf{u}, \mathbf{v}, \boldsymbol{\lambda}^{m}\right) \leftarrow \text { Often hard } \\
& \boldsymbol{\lambda}^{m+1}= \boldsymbol{\lambda}^{m}+\nu\left(\mathbf{c}-\mathbf{A} \mathbf{u}^{m+1}-\mathbf{B} \mathbf{v}^{m+1}\right) .
\end{aligned}
$$

$$
\begin{gathered}
\text { AMA Updates } \\
\mathbf{u}^{m+1}=\underset{\mathbf{u}}{\arg \min } \mathcal{L}_{0}\left(\mathbf{u}, \mathbf{v}^{m}, \boldsymbol{\lambda}^{m}\right) \\
\mathbf{v}^{m+1}=\underset{\mathbf{v}}{\arg \min } \mathcal{L}_{\nu}\left(\mathbf{u}^{m+1}, \mathbf{v}, \boldsymbol{\lambda}^{m}\right) \\
\boldsymbol{\lambda}^{m+1}=\boldsymbol{\lambda}^{m}+\nu\left(\mathbf{c}-\mathbf{A} \mathbf{u}^{m+1}-\mathbf{B v}^{m+1}\right)
\end{gathered}
$$

Goal: Simpler algorithms

ADMM Updates

$$
\begin{aligned}
& \mathbf{u}_{i}=\frac{1}{1+p \nu} \mathbf{y}_{i}+\frac{p \nu}{1+p \nu} \overline{\mathbf{x}} \\
& \mathbf{y}_{i}=\mathbf{x}_{i}+\sum_{l_{1}=i}\left[\boldsymbol{\lambda}_{l}+\nu \mathbf{v}_{l}\right]-\sum_{l_{2}=i}\left[\boldsymbol{\lambda}_{l}+\nu \mathbf{v}_{l}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{v}_{I} & =\underset{\mathbf{v}}{\arg \min } \frac{1}{2}\left\|\mathbf{v}-\left(\mathbf{u}_{l_{1}}-\mathbf{u}_{/_{2}}-\nu^{-1} \boldsymbol{\lambda}_{l}\right)\right\|_{2}^{2}+\frac{\gamma w_{l}}{\nu}\|\mathbf{v}\| \\
& =\operatorname{prox}_{\sigma_{l}\|\cdot\| / \nu}\left(\mathbf{u}_{/_{1}}-\mathbf{u}_{/_{2}}-\nu^{-1} \boldsymbol{\lambda}_{l}\right)
\end{aligned}
$$

where $\sigma_{l}=\gamma w_{l}$.

$$
\boldsymbol{\lambda}_{l}=\boldsymbol{\lambda}_{l}+\nu\left(\mathbf{v}_{l}-\mathbf{u}_{l_{1}}+\mathbf{u}_{/_{2}}\right)
$$

AMA Updates

$$
\begin{aligned}
\mathbf{u}_{i} & =\frac{1}{1+p 0} \mathbf{y}_{i}+\frac{p 0}{1+p 0} \overline{\mathbf{x}} \\
\mathbf{y}_{i} & =\mathbf{x}_{i}+\sum_{l_{1}=i}\left[\boldsymbol{\lambda}_{l}+0 \mathbf{v}_{l}\right]-\sum_{l_{2}=i}\left[\boldsymbol{\lambda}_{l}+0 \mathbf{v}_{l}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{v}_{l} & =\underset{\mathbf{v}}{\arg \min } \frac{1}{2}\left\|\mathbf{v}-\left(\mathbf{u}_{l_{1}}-\mathbf{u}_{/_{2}}-\nu^{-1} \boldsymbol{\lambda}_{l}\right)\right\|_{2}^{2}+\frac{\gamma w_{l}}{\nu}\|\mathbf{v}\| \\
& =\operatorname{prox}_{\sigma_{l}\|\cdot\| / \nu}\left(\mathbf{u}_{l_{1}}-\mathbf{u}_{/_{2}}-\nu^{-1} \boldsymbol{\lambda}_{l}\right)
\end{aligned}
$$

where $\sigma_{l}=\gamma w_{l}$.

$$
\boldsymbol{\lambda}_{l}=\boldsymbol{\lambda}_{l}+\nu\left(\mathbf{v}_{l}-\mathbf{u}_{l_{1}}+\mathbf{u}_{/_{2}}\right)
$$

AMA Updates

$$
\begin{aligned}
& \mathbf{u}_{i}=\mathbf{x}_{i}+\sum_{l_{1}=i} \boldsymbol{\lambda}_{I}-\sum_{l_{2}=i} \boldsymbol{\lambda}_{I} \\
& \mathbf{v}_{l}=\underset{\mathbf{v}}{\arg \min } \frac{1}{2}\left\|\mathbf{v}-\left(\mathbf{u}_{l_{1}}-\mathbf{u}_{l_{2}}-\nu^{-1} \boldsymbol{\lambda}_{l}\right)\right\|_{2}^{2}+\frac{\gamma W_{l}}{\nu}\|\mathbf{v}\| \\
& =\operatorname{prox}_{\sigma_{l}\|\cdot\| / \nu}\left(\mathbf{u}_{l_{1}}-\mathbf{u}_{l_{2}}-\nu^{-1} \boldsymbol{\lambda}_{l}\right),
\end{aligned}
$$

where $\sigma_{l}=\gamma w_{l}$.

$$
\boldsymbol{\lambda}_{l}=\boldsymbol{\lambda}_{I}+\nu\left(\mathbf{v}_{I}-\mathbf{u}_{l_{1}}+\mathbf{u}_{/_{2}}\right)
$$

Proximal Map

For $\sigma>0$ the function

$$
\operatorname{prox}_{\sigma \Omega}(\mathbf{v})=\underset{\tilde{\mathbf{v}}}{\arg \min }\left[\sigma \Omega(\tilde{\mathbf{v}})+\frac{1}{2}\|\mathbf{v}-\tilde{\mathbf{v}}\|_{2}^{2}\right]
$$

is the proximal map of the function $\Omega(\mathbf{v})$.

Minimizer always exists and is unique for norms

Proximal maps for common norms

Table: Proximal maps for common norms.

Norm	$\Omega(\mathbf{v})$	$\operatorname{prox}_{\sigma \Omega}(\mathbf{v})$				
ℓ_{1}	$\\|\mathbf{v}\\|_{1}$	$\left[1-\frac{\sigma}{\left.\mid \mathbf{v}_{\boldsymbol{l}}\right]_{+}}{ }_{+} v_{l}\right.$				
ℓ_{2}	$\\|\mathbf{v}\\|_{2}$	$\left[1-\frac{\sigma}{\\|\mathbf{v}\\|_{2}}\right]_{+} \mathbf{v}$				
ℓ_{∞}	$\\|\mathbf{v}\\|_{\infty}$	$\mathbf{v}-\mathcal{P}_{\sigma S}(\mathbf{v})$				
$\ell_{1,2}$	$\sum_{g \in \mathcal{G}}\left\\|\mathbf{v}_{g}\right\\|_{2}$	$\left[1-\frac{\sigma}{\left\\|\mathbf{v}_{\boldsymbol{g}}\right\\|_{2}}\right]_{+} \mathbf{v}_{g}$				

What's the Difference?

What's the Difference?

Remarks

- Both AMA and ADMM converge
- Both AMA and ADMM can be accelerated
- Beck and Teboulle (2009)
- Goldstein, O'Donoghue, and Setzer (2012)
- AMA and ADMM look very similar but...
- Convergence speed
- AMA is clearly faster
- Convergence
- ADMM converges when $\nu>0$
- AMA converges when $\nu \leq 1 / p$
- AMA requires stronger assumptions
- Smooth part of objective needs to be strongly convex

ADMM solver for Lasso

$$
\underset{\boldsymbol{\theta}}{\operatorname{minimize}} \frac{1}{2}\|\mathbf{y}-\mathbf{X} \boldsymbol{\theta}\|_{2}^{2}+\gamma\|\boldsymbol{\theta}\|_{1}
$$

ADMM solver for Lasso

$\underset{\boldsymbol{\theta}}{\operatorname{minimize}} \frac{1}{2}\|\mathbf{y}-\mathbf{X} \boldsymbol{\theta}\|_{2}^{2}+\gamma\|\mathbf{v}\|_{1} \quad$ subject to $\quad \boldsymbol{\theta}=\mathbf{v}$,

ADMM solver for Lasso

$\underset{\boldsymbol{\theta}}{\operatorname{minimize}} \frac{1}{2}\|\mathbf{y}-\mathbf{X} \boldsymbol{\theta}\|_{2}^{2}+\gamma\|\boldsymbol{v}\|_{1}$ subject to $\boldsymbol{\theta}=\mathbf{v}$,
Augmented Lagrangian

$$
\mathcal{L}(\boldsymbol{\theta}, \mathbf{v}, \boldsymbol{\lambda})=\frac{1}{2 n}\|\mathbf{y}-\mathbf{X} \boldsymbol{\theta}\|_{2}^{2}+\gamma\|\mathbf{v}\|_{1}+\frac{\nu}{2}\|\boldsymbol{\theta}-\mathbf{v}+\boldsymbol{\lambda}\|_{2}^{2} .
$$

ADMM solver for Lasso

$$
\underset{\boldsymbol{\theta}}{\operatorname{minimize}} \frac{1}{2}\|\mathbf{y}-\mathbf{X} \boldsymbol{\theta}\|_{2}^{2}+\gamma\|\mathbf{v}\|_{1} \text { subject to } \boldsymbol{\theta}=\mathbf{v},
$$

Augmented Lagrangian

$$
\mathcal{L}(\boldsymbol{\theta}, \mathbf{v}, \boldsymbol{\lambda})=\frac{1}{2 n}\|\mathbf{y}-\mathbf{X} \boldsymbol{\theta}\|_{2}^{2}+\gamma\|\mathbf{v}\|_{1}+\frac{\nu}{2}\|\boldsymbol{\theta}-\mathbf{v}+\boldsymbol{\lambda}\|_{2}^{2} .
$$

ADMM Updates

$$
\begin{aligned}
\boldsymbol{\theta}^{k} & =\underset{\boldsymbol{\theta}}{\operatorname{minimize}} \frac{1}{2 n}\|\mathbf{y}-\mathbf{X} \boldsymbol{\theta}\|_{2}^{2}+\frac{\nu}{2}\left\|\boldsymbol{\theta}-\mathbf{v}^{k-1}+\boldsymbol{\lambda}^{k-1}\right\|_{2}^{2} . \\
\mathbf{v}^{k} & =\underset{v}{\operatorname{minimize}} \gamma\|\mathbf{v}\|_{1}+\frac{\nu}{2}\left\|\mathbf{v}-\boldsymbol{\theta}^{k}-\boldsymbol{\lambda}^{k-1}\right\|_{2}^{2} . \\
\boldsymbol{\lambda}^{k} & =\boldsymbol{\lambda}^{k-1}+\boldsymbol{\theta}^{k}-\mathbf{v}^{k} .
\end{aligned}
$$

Getting started

- Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011), "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers," Found. Trends Mach. Learn., 3, 1-122.
- Tseng, P. (1991), "Applications of a Splitting Algorithm to Decomposition in Convex Programming and Variational Inequalities," SIAM Journal on Control and Optimization, 29, 119-138.

