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Two Typical Problems

I Regularized estimation to get sparse solutions

✓̂ = argmin
✓

1

2
ky � X✓k22 + �k✓k1

Arises in biomedical problems: genome wide association
studies
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The Generic Problem

✓̂ = argmin
✓

L(✓)|{z}
Lack of fit

+ J(✓)|{z}
Complexity

Reasons for success:

I Theory: Consistency and convergence rates when n, p ! 1
I Computation: Fast and scalable algorithms for computing ✓̂



The Generic Problem

✓̂ = argmin
✓

L(✓)|{z}
Lack of fit

+ J(D✓)| {z }
Complexity

Reasons for success:

I Theory: Consistency and convergence rates when n, p ! 1
I Computation: Fast and scalable algorithms for computing ✓̂



What Variable Splitting Can Do For You

✓̂ = argmin
✓

L(✓) + J(D✓)

Variable splitting is

I helpful when J(✓) is to work with but J(D✓) is not.
I typically easy to derive and code

I e.g. Lasso solver in less than 10 lines of code.

I modestly accurate solutions in 10s to 100s of iterations.



Agenda

I Case Study: Convex Clustering I
I Variable Splitting

I ADMM
I AMA

I Case Study: Convex Clustering II

I Case Study: ADMM for Lasso



The Clustering Problem

Task:

I Given p points in q dimensions

I
X 2 Rq⇥p

I group similar points together.
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The Clustering Problem

Many approaches:

I k-means, mixture models

I Hierarchical clustering

I Spectral clustering, ...
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The Clustering Problem

Computational Issues

I Nonconvex formulations

I Local minimizers

I Instability (initializations, tuning parameters, or data)
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Convex Clustering

I Pelckmans et al. 2005, Lindsten et al. 2011, Hocking et al.
2011

minimize
u

1

2

nX

i=1

kxi � uik22 + �
X

i<j

wijkui � ujk2

I Assign a centroid ui to each data point xi .
I Convex Fusion Penalty

I shrinks cluster centroids together
I sparsity in pairwise di↵erences of centroids

ui � uj = 0 () xi and xj belong to the same cluster

I � : tunes overall amount of regularization

I wij : fine tunes pairwise shrinkage

I Generalizes fused lasso
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The Solution Path

minimize
1

2
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The Solution Path

minimize
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Two Interlocking Half-Moons



Senate Voting
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Apparently Non-Trivial Optimization Problem

Why is this hard to solve?

minimize
1

2

nX

i=1

kxi � uik22 + �
X

i<j

wijkui � ujk2

General Recipe:

1. Introduce a dummy variable

unconstrained ! equality constrained

2. Use iterative method to solve equality constrained version
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Nonsmooth? Not the issue
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Convex Clustering: Variable Split Version

minimize
1

2

pX

i=1

kxi � uik22 + �
X

l

wlkvlk

subject to ul1 � ul2 � vl = 0

l = (l1, l2) with l1 < l2.

Equality constrained optimization...
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Convex Clustering: Variable Split Version

minimize
1

2

pX

i=1

kxi � uik22 + �
X

l

wlkvlk

subject to ul1 � ul2 � vl = 0

l = (l1, l2) with l1 < l2.

Lagrange Multipliers



Lagrange Multipliers

augmented Lagrangian method (ALM)

minimize f (u) + g(v)

subject to Au+ Bv = c,
(5)

ALM solves the equivalent problem

minimize f (u) + g(v) +
⌫

2
kc� Au� Bvk22,

subject to Au+ Bv = c

(6)

Typically need to solve this iteratively.

The Dual & AMA

L(u, v,�) = f (u) + g(v) + h�, c� Au� Bvi
D(�) = argmin

u,v
L(u, v,�)

for any feasible (ũ, ṽ)

D(�) = argmin
u,v

L(u, v,�)  L(ũ, ṽ,�) = f (ũ) + g(ṽ)

D(�)  f (ũ) + g(ṽ)

Therefore,

D(�?) = max
�

D(�)  min
u,v

f (u) + g(v) = f (u?) + g(v?)

D(�?)  f (u?) + g(v?)

D(�?) = f (u?) + g(v?)

augmented Lagrangian method (ALM)

minimize f (u) + g(v)

subject to Au+ Bv = c,
(5)

L(u, v,�) = f (u) + g(v) + h�, c� Au� Bvi

(u?, v?) is a solution if there is a �? st (u?, v?,�?) is a stationary
point of the Lagrangian,

rL(u?, v?,�?) = 0.

ame

minimize f (u) + g(v)

subject to Au+ Bv = c,
(6)

(u?, v?) = argmin
u,v

L(u, v,�?)

(u?, v?) is a solution if there is a �? st (u?, v?,�?) is a stationary
point of the Lagrangian,

rL(u?, v?,�?) = 0.



Augmented Lagrangian Method
augmented Lagrangian method (ALM)

minimize f (u) + g(v)

subject to Au+ Bv = c,
(5)

ALM solves the equivalent problem

minimize f (u) + g(v) +
⌫

2
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subject to Au+ Bv = c

(6)
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ALM: Augmented Lagrangian Method

augmented Lagrangian method (ALM)

L⌫(u, v,�) = f (u) + g(v) + h�, c� Au� Bvi+ ⌫

2
kc� Au� Bvk2

2

augmented Lagrangian method (ALM)

minimize f (u) + g(v)

subject to Au+ Bv = c,
(5)

ALM solves the equivalent problem

minimize f (u) + g(v) +
⌫

2
kc� Au� Bvk22,

subject to Au+ Bv = c

(6)

The Augmented Lagrangian

ALM Updates

augmented Lagrangian method (ALM)

(um+1, vm+1) = argmin
u,v

L⌫(u, v,�
m)

�m+1 = �m + ⌫(c� Au

m+1 � Bv

m+1).
(8)
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ALM: Augmented Lagrangian Method

augmented Lagrangian method (ALM)

(um+1, vm+1) = argmin
u,v

L⌫(u, v,�
m)

�m+1 = �m + ⌫(c� Au

m+1 � Bv

m+1).
(8)

ALM Updates
Often hard

1.  Alternating Direction Method of Multipliers (ADMM)

2.  Alternating Minimization Algorithm (AMA)

(Gabay & Mercier 1976, Glowinski & Marrocco 1975)

(Tseng 1991)



ADMM: Alternating Direction Method of Multipliers
ADMM

Unfortunately, the minimization of the augmented Lagrangian over
u and v jointly is often di�cult. ADMM and AMA adopt di↵erent
strategies in simplifying the minimization subproblem in the ALM
updates . ADMM minimizes the augmented Lagrangian one block
of variables at a time. This yields the algorithm

u

m+1 = argmin
u

L⌫(u, v
m,�m)

v

m+1 = argmin
v

L⌫(u
m+1, v,�m)

�m+1 = �m + ⌫(c� Au

m+1 � Bv

m+1).

(9)

ADMM Updates

Goal: Simpler algorithms
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Proximal Map

For � > 0 the function

prox�⌦(v) = argmin
ṽ


�⌦(ṽ) +

1

2
kv � ṽk22

�

is the proximal map of the function ⌦(v).

Minimizer always exists and is unique for norms



Proximal maps for common norms

Table: Proximal maps for common norms.

Norm ⌦(v) prox�⌦(v)

`1 kvk1
h
1� �

|vl |

i

+
vl

`2 kvk2
h
1� �

kvk2

i

+
v

`1 kvk1 v � P�S(v)

`1,2
P

g2G kvgk2
h
1� �

kvgk2

i

+
vg
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Remarks

I Both AMA and ADMM converge
I Both AMA and ADMM can be accelerated

I Beck and Teboulle (2009)
I Goldstein, O’Donoghue, and Setzer (2012)

I AMA and ADMM look very similar but...
I Convergence speed

I
AMA is clearly faster

I Convergence
I

ADMM converges when ⌫ > 0

I
AMA converges when ⌫  1/p

I AMA requires stronger assumptions
I

Smooth part of objective needs to be strongly convex



ADMM solver for Lasso
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Getting started

I Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
(2011), “Distributed Optimization and Statistical Learning via
the Alternating Direction Method of Multipliers,” Found.
Trends Mach. Learn., 3, 1-122.

I Tseng, P. (1991), “Applications of a Splitting Algorithm to
Decomposition in Convex Programming and Variational
Inequalities,” SIAM Journal on Control and Optimization, 29,
119-138.


