
Variable Splitting Methods

Eric Chi

January 15, 2016

Two Typical Problems

I Regularized estimation to get sparse solutions

✓̂ = argmin
✓

1

2
ky � X✓k22 + �k✓k1

Arises in biomedical problems: genome wide association
studies

y

θ

X= + ε

Two Typical Problems

I Regularized estimation to get low-rank solutions

Ẑ = argmin
Z

1

2
kX� Zk22 + �kZk⇤

Arises in collaborative filtering: Netflix

X = + ε

Z

Two Typical Problems

I Regularized estimation to get low-rank solutions

Ẑ = argmin
Z

1

2
kX� Zk22 + �kZk⇤

Arises in collaborative filtering: Netflix

X = + ε

Z

?

?
?

?

??

?

The Generic Problem

✓̂ = argmin
✓

L(✓)|{z}
Lack of fit

+ J(✓)|{z}
Complexity

Reasons for success:

I Theory: Consistency and convergence rates when n, p ! 1
I Computation: Fast and scalable algorithms for computing ✓̂

The Generic Problem

✓̂ = argmin
✓

L(✓)|{z}
Lack of fit

+ J(D✓)| {z }
Complexity

Reasons for success:

I Theory: Consistency and convergence rates when n, p ! 1
I Computation: Fast and scalable algorithms for computing ✓̂

What Variable Splitting Can Do For You

✓̂ = argmin
✓

L(✓) + J(D✓)

Variable splitting is

I helpful when J(✓) is to work with but J(D✓) is not.
I typically easy to derive and code

I e.g. Lasso solver in less than 10 lines of code.

I modestly accurate solutions in 10s to 100s of iterations.

Agenda

I Case Study: Convex Clustering I
I Variable Splitting

I ADMM
I AMA

I Case Study: Convex Clustering II

I Case Study: ADMM for Lasso

The Clustering Problem

Task:

I Given p points in q dimensions

I
X 2 Rq⇥p

I group similar points together.

●●●
●
●● ●●

●●
●
●

●
● ●●●●

●●

●●
●

●

●●
●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●
●

●●
●
●

●●

●●

●
●

●●
●
●●

●

●

●
● ●

●

●
●

●

●●●
● ●●

●
●

●

●

●

●

●●

●
●●●

●

●●
●

●

●
●
●●

●
●

●●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9
x

y

The Clustering Problem

Many approaches:

I k-means, mixture models

I Hierarchical clustering

I Spectral clustering, ...

●●●
●
●● ●●

●●
●
●

●
● ●●●●

●●

●●
●

●

●●
●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●
●

●●
●
●

●●

●●

●
●

●●
●
●●

●

●

●
● ●

●

●
●

●

●●●
● ●●

●
●

●

●

●

●

●●

●
●●●

●

●●
●

●

●
●
●●

●
●

●●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9
x

y

The Clustering Problem

Computational Issues

I Nonconvex formulations

I Local minimizers

I Instability (initializations, tuning parameters, or data)

●●●
●
●● ●●

●●
●
●

●
● ●●●●

●●

●●
●

●

●●
●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●
●

●●
●
●

●●

●●

●
●

●●
●
●●

●

●

●
● ●

●

●
●

●

●●●
● ●●

●
●

●

●

●

●

●●

●
●●●

●

●●
●

●

●
●
●●

●
●

●●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9
x

y

Convex Clustering

I Pelckmans et al. 2005, Lindsten et al. 2011, Hocking et al.
2011

minimize
u

1

2

nX

i=1

kxi � uik22 + �
X

i<j

wijkui � ujk2

I Assign a centroid ui to each data point xi .
I Convex Fusion Penalty

I shrinks cluster centroids together
I sparsity in pairwise di↵erences of centroids

ui � uj = 0 () xi and xj belong to the same cluster

I � : tunes overall amount of regularization

I wij : fine tunes pairwise shrinkage

I Generalizes fused lasso

Convex Clustering

I Pelckmans et al. 2005, Lindsten et al. 2011, Hocking et al.
2011

minimize
u

1

2

nX

i=1

kxi � uik22 + �
X

i<j

wijkui � ujk2

I Assign a centroid ui to each data point xi .
I Convex Fusion Penalty

I shrinks cluster centroids together
I sparsity in pairwise di↵erences of centroids

ui � uj = 0 () xi and xj belong to the same cluster

I � : tunes overall amount of regularization

I wij : fine tunes pairwise shrinkage

I Generalizes fused lasso

Too many degrees of freedom!

Convex Clustering

I Pelckmans et al. 2005, Lindsten et al. 2011, Hocking et al.
2011

minimize
u

1

2

nX

i=1

kxi � uik22 + �
X

i<j

wijkui � ujk2

I Assign a centroid ui to each data point xi .
I Convex Fusion Penalty

I shrinks cluster centroids together
I sparsity in pairwise di↵erences of centroids

ui � uj = 0 () xi and xj belong to the same cluster

I � : tunes overall amount of regularization

I wij : fine tunes pairwise shrinkage

I Generalizes fused lasso

The Solution Path

minimize
1

2

nX

i=1

kxi � uik22 + �
X

i<j

wijkui � ujk2

The Solution Path

minimize
1

2

nX

i=1

kxi � uik2 + �
X

i<j

wijkui � ujk2

E. Chi Convex Biclustering 11

●●●
●
●● ●●

●●
●
●

●
● ●●●●

●●

●●
●

●

●●
●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●
●

●●
●
●

●●

●●

●
●

●●
●
●●

●

●

●
● ●

●

●
●

●

●●●
● ●●

●
●

●

●

●

●

●●

●
●●●

●

●●
●

●

●
●
●●

●
●

●●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9
x

y

The Solution Path

minimize
1

2

nX

i=1

kxi � uik22 + �
X

i<j

wijkui � ujk2

●●●
●
●● ●●

●●
●
●

●
● ●●●●

●●

●●
●

●

●●
●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●
●

●●
●
●

●●

●●

●
●

●●
●
●●

●

●

●
● ●

●

●
●

●

●●●
● ●●

●
●

●

●

●

●

●●

●
●●●

●

●●
●

●

●
●
●●

●
●

●●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9
x

y

The Solution Path

minimize
1

2

nX

i=1

kxi � uik2 + �
X

i<j

wijkui � ujk2

E. Chi Convex Biclustering 11

The Solution Path

minimize
1

2

nX

i=1

kxi � uik22 + �
X

i<j

wijkui � ujk2

●●●
●
●● ●●

●●
●
●

●
● ●●●●

●●

●●
●

●

●●
●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●
●

●●
●
●

●●

●●

●
●

●●
●
●●

●

●

●
● ●

●

●
●

●

●●●
● ●●

●
●

●

●

●

●

●●

●
●●●

●

●●
●

●

●
●
●●

●
●

●●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9
x

y

The Solution Path

minimize
1

2

nX

i=1

kxi � uik2 + �
X

i<j

wijkui � ujk2

E. Chi Convex Biclustering 11

The Solution Path

minimize
1

2

nX

i=1

kxi � uik22 + �
X

i<j

wijkui � ujk2

●●●
●
●● ●●

●●
●
●

●
● ●●●●

●●

●●
●

●

●●
●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●
●

●●
●
●

●●

●●

●
●

●●
●
●●

●

●

●
● ●

●

●
●

●

●●●
● ●●

●
●

●

●

●

●

●●

●
●●●

●

●●
●

●

●
●
●●

●
●

●●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9
x

y

The Solution Path

minimize
1

2

nX

i=1

kxi � uik2 + �
X

i<j

wijkui � ujk2

E. Chi Convex Biclustering 11

The Solution Path

minimize
1

2

nX

i=1

kxi � uik22 + �
X

i<j

wijkui � ujk2

●●●
●
●● ●●

●●
●
●

●
● ●●●●

●●

●●
●

●

●●
●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●
●

●●
●
●

●●

●●

●
●

●●
●
●●

●

●

●
● ●

●

●
●

●

●●●
● ●●

●
●

●

●

●

●

●●

●
●●●

●

●●
●

●

●
●
●●

●
●

●●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9
x

y

The Solution Path

minimize
1

2

nX

i=1

kxi � uik2 + �
X

i<j

wijkui � ujk2

E. Chi Convex Biclustering 11

The Solution Path

minimize
1

2

nX

i=1

kxi � uik22 + �
X

i<j

wijkui � ujk2

●●●
●
●● ●●

●●
●
●

●
● ●●●●

●●

●●
●

●

●●
●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●
●

●●
●
●

●●

●●

●
●

●●
●
●●

●

●

●
● ●

●

●
●

●

●●●
● ●●

●
●

●

●

●

●

●●

●
●●●

●

●●
●

●

●
●
●●

●
●

●●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9
x

y

The Solution Path

minimize
1

2

nX

i=1

kxi � uik2 + �
X

i<j

wijkui � ujk2

E. Chi Convex Biclustering 11

The Solution Path

minimize
1

2

nX

i=1

kxi � uik22 + �
X

i<j

wijkui � ujk2

●●●
●
●● ●●

●●
●
●

●
● ●●●●

●●

●●
●

●

●●
●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●
●

●●
●
●

●●

●●

●
●

●●
●
●●

●

●

●
● ●

●

●
●

●

●●●
● ●●

●
●

●

●

●

●

●●

●
●●●

●

●●
●

●

●
●
●●

●
●

●●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9
x

y

The Solution Path

minimize
1

2

nX

i=1

kxi � uik2 + �
X

i<j

wijkui � ujk2

E. Chi Convex Biclustering 11

The Solution Path

minimize
1

2

nX

i=1

kxi � uik22 + �
X

i<j

wijkui � ujk2

●●●
●
●● ●●

●●
●
●

●
● ●●●●

●●

●●
●

●

●●
●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●
●

●●
●
●

●●

●●

●
●

●●
●
●●

●

●

●
● ●

●

●
●

●

●●●
● ●●

●
●

●

●

●

●

●●

●
●●●

●

●●
●

●

●
●
●●

●
●

●●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9
x

y

The Solution Path

minimize
1

2

nX

i=1

kxi � uik2 + �
X

i<j

wijkui � ujk2

E. Chi Convex Biclustering 11

The Solution Path

minimize
1

2

nX

i=1

kxi � uik22 + �
X

i<j

wijkui � ujk2

●●●
●
●● ●●

●●
●
●

●
● ●●●●

●●

●●
●

●

●●
●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●
●

●●
●
●

●●

●●

●
●

●●
●
●●

●

●

●
● ●

●

●
●

●

●●●
● ●●

●
●

●

●

●

●

●●

●
●●●

●

●●
●

●

●
●
●●

●
●

●●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9
x

y

The Solution Path

minimize
1

2

nX

i=1

kxi � uik2 + �
X

i<j

wijkui � ujk2

E. Chi Convex Biclustering 11

Two Interlocking Half-Moons

Senate Voting

A B

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

Sessions

Shelby

Stevens

McCain

Hutchinson

Lincoln

Boxer

Dodd
Lieberman

Cleland

Miller

Lugar

Breaux

Landrieu

Collins

Snowe

Carnahan

Baucus

Hagel

Nelson1

Conrad

VoinovichNickles

Specter

Chafee

Hollings

Johnson

Jeffords

Byrd

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

Sessions

Shelby

Stevens

McCain

Hutchinson

Lincoln

Boxer

DoddLieberman

Cleland

Miller

Lugar

Breaux

Landrieu

Collins

Snowe

Carnahan

Baucus Hagel

Nelson1

Conrad

Voinovich
Nickles

Specter

Chafee

Hollings
Johnson

Jeffords

Byrd

−0.5

0.0

0.5

1.0

−2 −1 0 1 2 −2 −1 0 1 2
Principal Component 1

Pr
in

ci
pa

l C
om

po
ne

nt
 2

Party
● (D)

(I)
(R)

Apparently Non-Trivial Optimization Problem

Why is this hard to solve?

minimize
1

2

nX

i=1

kxi � uik22 + �
X

i<j

wijkui � ujk2

General Recipe:

1. Introduce a dummy variable

unconstrained ! equality constrained

2. Use iterative method to solve equality constrained version

Apparently Non-Trivial Optimization Problem

Why is this hard to solve?

minimize
1

2

nX

i=1

kxi � uik22 + �
X

i<j

wijkui � ujk2

General Recipe:

1. Introduce a dummy variable

unconstrained ! equality constrained

2. Use iterative method to solve equality constrained version

Nonsmooth? Not the issue

Apparently Non-Trivial Optimization Problem

Why is this hard to solve?

minimize
1

2

nX

i=1

kxi � uik22 + �
X

i<j

wijkui � ujk2

General Recipe:

1. Introduce a dummy variable

unconstrained ! equality constrained

2. Use iterative method to solve equality constrained version

Affine transformation of u

Apparently Non-Trivial Optimization Problem

Why is this hard to solve?

minimize
1

2

nX

i=1

kxi � uik22 + �
X

i<j

wijkui � ujk2

General Recipe:

1. Introduce a dummy variable

unconstrained ! equality constrained

2. Use iterative method to solve equality constrained version

Convex Clustering: Variable Split Version

minimize
1

2

pX

i=1

kxi � uik22 + �
X

l

wlkvlk

subject to ul1 � ul2 � vl = 0

l = (l1, l2) with l1 < l2.

Equality constrained optimization...

Convex Clustering: Variable Split Version

minimize
1

2

pX

i=1

kxi � uik22 + �
X

l

wlkvlk

subject to ul1 � ul2 � vl = 0

l = (l1, l2) with l1 < l2.

Convex Clustering: Variable Split Version

minimize
1

2

pX

i=1

kxi � uik22 + �
X

l

wlkvlk

subject to ul1 � ul2 � vl = 0

l = (l1, l2) with l1 < l2.

Lagrange Multipliers

Lagrange Multipliers

augmented Lagrangian method (ALM)

minimize f (u) + g(v)

subject to Au+ Bv = c,
(5)

ALM solves the equivalent problem

minimize f (u) + g(v) +
⌫

2
kc� Au� Bvk22,

subject to Au+ Bv = c

(6)

Typically need to solve this iteratively.

The Dual & AMA

L(u, v,�) = f (u) + g(v) + h�, c� Au� Bvi
D(�) = argmin

u,v
L(u, v,�)

for any feasible (ũ, ṽ)

D(�) = argmin
u,v

L(u, v,�)  L(ũ, ṽ,�) = f (ũ) + g(ṽ)

D(�)  f (ũ) + g(ṽ)

Therefore,

D(�?) = max
�

D(�)  min
u,v

f (u) + g(v) = f (u?) + g(v?)

D(�?)  f (u?) + g(v?)

D(�?) = f (u?) + g(v?)

augmented Lagrangian method (ALM)

minimize f (u) + g(v)

subject to Au+ Bv = c,
(5)

L(u, v,�) = f (u) + g(v) + h�, c� Au� Bvi

(u?, v?) is a solution if there is a �? st (u?, v?,�?) is a stationary
point of the Lagrangian,

rL(u?, v?,�?) = 0.

ame

minimize f (u) + g(v)

subject to Au+ Bv = c,
(6)

(u?, v?) = argmin
u,v

L(u, v,�?)

(u?, v?) is a solution if there is a �? st (u?, v?,�?) is a stationary
point of the Lagrangian,

rL(u?, v?,�?) = 0.

Augmented Lagrangian Method
augmented Lagrangian method (ALM)

minimize f (u) + g(v)

subject to Au+ Bv = c,
(5)

ALM solves the equivalent problem

minimize f (u) + g(v) +
⌫

2
kc� Au� Bvk22,

subject to Au+ Bv = c

(6)

augmented Lagrangian method (ALM)

minimize f (u) + g(v)

subject to Au+ Bv = c,
(5)

ALM solves the equivalent problem

minimize f (u) + g(v) +
⌫

2
kc� Au� Bvk22,

subject to Au+ Bv = c

(6)

ALM: Augmented Lagrangian Method

augmented Lagrangian method (ALM)

L⌫(u, v,�) = f (u) + g(v) + h�, c� Au� Bvi+ ⌫

2
kc� Au� Bvk2

2

augmented Lagrangian method (ALM)

minimize f (u) + g(v)

subject to Au+ Bv = c,
(5)

ALM solves the equivalent problem

minimize f (u) + g(v) +
⌫

2
kc� Au� Bvk22,

subject to Au+ Bv = c

(6)

The Augmented Lagrangian

ALM Updates

augmented Lagrangian method (ALM)

(um+1, vm+1) = argmin
u,v

L⌫(u, v,�
m)

�m+1 = �m + ⌫(c� Au

m+1 � Bv

m+1).
(8)

ALM: Augmented Lagrangian Method

augmented Lagrangian method (ALM)

(um+1, vm+1) = argmin
u,v

L⌫(u, v,�
m)

�m+1 = �m + ⌫(c� Au

m+1 � Bv

m+1).
(8)

ALM Updates
Often hard

ALM: Augmented Lagrangian Method

augmented Lagrangian method (ALM)

(um+1, vm+1) = argmin
u,v

L⌫(u, v,�
m)

�m+1 = �m + ⌫(c� Au

m+1 � Bv

m+1).
(8)

ALM Updates
Often hard

1. Alternating Direction Method of Multipliers (ADMM)

2. Alternating Minimization Algorithm (AMA)

(Gabay & Mercier 1976, Glowinski & Marrocco 1975)

(Tseng 1991)

ADMM: Alternating Direction Method of Multipliers
ADMM

Unfortunately, the minimization of the augmented Lagrangian over
u and v jointly is often di�cult. ADMM and AMA adopt di↵erent
strategies in simplifying the minimization subproblem in the ALM
updates . ADMM minimizes the augmented Lagrangian one block
of variables at a time. This yields the algorithm

u

m+1 = argmin
u

L⌫(u, v
m,�m)

v

m+1 = argmin
v

L⌫(u
m+1, v,�m)

�m+1 = �m + ⌫(c� Au

m+1 � Bv

m+1).

(9)

ADMM Updates

Goal: Simpler algorithms

augmented Lagrangian method (ALM)

(um+1, vm+1) = argmin
u,v

L⌫(u, v,�
m)

�m+1 = �m + ⌫(c� Au

m+1 � Bv

m+1).
(8)

ALM Updates
Often hard

AMA: Alternating Minimization Algorithm
AMA

AMA takes a slightly di↵erent tack and updates the first block u

without augmentation, assuming f (u) is strongly convex. This
change is accomplished by setting the positive tuning constant ⌫
to be 0. The overall algorithm iterates according to

u

m+1 = argmin
u

L
0

(u, vm,�m)

v

m+1 = argmin
v

L⌫(u
m+1, v,�m)

�m+1 = �m + ⌫(c� Au

m+1 � Bv

m+1).

(10)

AMA Updates

Goal: Simpler algorithms

augmented Lagrangian method (ALM)

(um+1, vm+1) = argmin
u,v

L⌫(u, v,�
m)

�m+1 = �m + ⌫(c� Au

m+1 � Bv

m+1).
(8)

ALM Updates
Often hard

ADMM UpdatesADMM

ui =
1

1 + p⌫
yi +

p⌫

1 + p⌫
x̄

yi = xi +
X

l1=i

[�l + ⌫vl]�
X

l2=i

[�l + ⌫vl].

vl = argmin
v

1

2
kv � (ul1 � ul2 � ⌫�1�l)k22 +

�wl

⌫
kvk

= prox�lk·k/⌫(ul1 � ul2 � ⌫�1�l),
(10)

where �l = �wl .

�l = �l + ⌫(vl � ul1 + ul2).

ADMM

ui =
1

1 + p⌫
yi +

p⌫

1 + p⌫
x̄

yi = xi +
X

l1=i

[�l + ⌫vl]�
X

l2=i

[�l + ⌫vl].

vl = argmin
v

1

2
kv � (ul1 � ul2 � ⌫�1�l)k22 +

�wl

⌫
kvk

= prox�lk·k/⌫(ul1 � ul2 � ⌫�1�l),
(10)

where �l = �wl .

�l = �l + ⌫(vl � ul1 + ul2).

ADMM

ui =
1

1 + p⌫
yi +

p⌫

1 + p⌫
x̄

yi = xi +
X

l1=i

[�l + ⌫vl]�
X

l2=i

[�l + ⌫vl].

vl = argmin
v

1

2
kv � (ul1 � ul2 � ⌫�1�l)k22 +

�wl

⌫
kvk

= prox�lk·k/⌫(ul1 � ul2 � ⌫�1�l),
(10)

where �l = �wl .

�l = �l + ⌫(vl � ul1 + ul2).

AMA UpdatesAMA

ui =
1

1 + p0
yi +

p0

1 + p0
x̄

yi = xi +
X

l1=i

[�l + 0vl]�
X

l2=i

[�l + 0vl].

vl = argmin
v

1

2
kv � (ul1 � ul2 � ⌫�1�l)k22 +

�wl

⌫
kvk

= prox�lk·k/⌫(ul1 � ul2 � ⌫�1�l),
(11)

where �l = �wl .

�l = �l + ⌫(vl � ul1 + ul2).

ADMM

ui =
1

1 + p⌫
yi +

p⌫

1 + p⌫
x̄

yi = xi +
X

l1=i

[�l + ⌫vl]�
X

l2=i

[�l + ⌫vl].

vl = argmin
v

1

2
kv � (ul1 � ul2 � ⌫�1�l)k22 +

�wl

⌫
kvk

= prox�lk·k/⌫(ul1 � ul2 � ⌫�1�l),
(10)

where �l = �wl .

�l = �l + ⌫(vl � ul1 + ul2).

ADMM

ui =
1

1 + p⌫
yi +

p⌫

1 + p⌫
x̄

yi = xi +
X

l1=i

[�l + ⌫vl]�
X

l2=i

[�l + ⌫vl].

vl = argmin
v

1

2
kv � (ul1 � ul2 � ⌫�1�l)k22 +

�wl

⌫
kvk

= prox�lk·k/⌫(ul1 � ul2 � ⌫�1�l),
(10)

where �l = �wl .

�l = �l + ⌫(vl � ul1 + ul2).

AMA Updates
AMA

ui = xi +
X

l1=i

�l �
X

l2=i

�l

vl = argmin
v

1

2
kv � (ul1 � ul2 � ⌫�1�l)k22 +

�wl

⌫
kvk

= prox�lk·k/⌫(ul1 � ul2 � ⌫�1�l),
(12)

where �l = �wl .

�l = �l + ⌫(vl � ul1 + ul2).

ADMM

ui =
1

1 + p⌫
yi +

p⌫

1 + p⌫
x̄

yi = xi +
X

l1=i

[�l + ⌫vl]�
X

l2=i

[�l + ⌫vl].

vl = argmin
v

1

2
kv � (ul1 � ul2 � ⌫�1�l)k22 +

�wl

⌫
kvk

= prox�lk·k/⌫(ul1 � ul2 � ⌫�1�l),
(10)

where �l = �wl .

�l = �l + ⌫(vl � ul1 + ul2).

ADMM

ui =
1

1 + p⌫
yi +

p⌫

1 + p⌫
x̄

yi = xi +
X

l1=i

[�l + ⌫vl]�
X

l2=i

[�l + ⌫vl].

vl = argmin
v

1

2
kv � (ul1 � ul2 � ⌫�1�l)k22 +

�wl

⌫
kvk

= prox�lk·k/⌫(ul1 � ul2 � ⌫�1�l),
(10)

where �l = �wl .

�l = �l + ⌫(vl � ul1 + ul2).

Proximal Map

For � > 0 the function

prox�⌦(v) = argmin
ṽ


�⌦(ṽ) +

1

2
kv � ṽk22

�

is the proximal map of the function ⌦(v).

Minimizer always exists and is unique for norms

Proximal maps for common norms

Table: Proximal maps for common norms.

Norm ⌦(v) prox�⌦(v)

`1 kvk1
h
1� �

|vl |

i

+
vl

`2 kvk2
h
1� �

kvk2

i

+
v

`1 kvk1 v � P�S(v)

`1,2
P

g2G kvgk2
h
1� �

kvgk2

i

+
vg

What’s the Di↵erence?

●

●

●

●

●

●

0

50

100

150

200

100 200 300 400 500
p

Sq
ua

re
 ro

ot
 o

f r
un

 ti
m

e
(s

ec
)

Method
Subgradient
AMA
ADMM

What’s the Di↵erence?

●

●

●

●

●

●

0

50

100

150

200

100 200 300 400 500
p

Sq
ua

re
 ro

ot
 o

f r
un

 ti
m

e
(s

ec
)

Method
Subgradient
AMA
ADMM

3.5 hrs
2.9 hrs

16 min

Remarks

I Both AMA and ADMM converge
I Both AMA and ADMM can be accelerated

I Beck and Teboulle (2009)
I Goldstein, O’Donoghue, and Setzer (2012)

I AMA and ADMM look very similar but...
I Convergence speed

I
AMA is clearly faster

I Convergence
I

ADMM converges when ⌫ > 0

I
AMA converges when ⌫  1/p

I AMA requires stronger assumptions
I

Smooth part of objective needs to be strongly convex

ADMM solver for Lasso

minimize
✓

1

2
ky � X✓k22 + �k✓k1

Augmented Lagrangian

L(✓, v,�) = 1

2n
ky � X✓k22 + �kvk1 + ⌫

2
k✓ � v + �k22.

ADMM Updates

✓k = minimize
✓

1

2n
ky � X✓k22 +

⌫

2
k✓ � v

k�1 + �k�1k22.

v

k = minimize
v

�kvk1 + ⌫

2
kv � ✓k � �k�1k22.

�k = �k�1 + ✓k � v

k .

ADMM solver for Lasso

minimize
✓

1

2
ky � X✓k22 + �kvk1 subject to ✓ = v,

Augmented Lagrangian

L(✓, v,�) = 1

2n
ky � X✓k22 + �kvk1 + ⌫

2
k✓ � v + �k22.

ADMM Updates

✓k = minimize
✓

1

2n
ky � X✓k22 +

⌫

2
k✓ � v

k�1 + �k�1k22.

v

k = minimize
v

�kvk1 + ⌫

2
kv � ✓k � �k�1k22.

�k = �k�1 + ✓k � v

k .

ADMM solver for Lasso

minimize
✓

1

2
ky � X✓k22 + �kvk1 subject to ✓ = v,

Augmented Lagrangian

L(✓, v,�) = 1

2n
ky � X✓k22 + �kvk1 + ⌫

2
k✓ � v + �k22.

ADMM Updates

✓k = minimize
✓

1

2n
ky � X✓k22 +

⌫

2
k✓ � v

k�1 + �k�1k22.

v

k = minimize
v

�kvk1 + ⌫

2
kv � ✓k � �k�1k22.

�k = �k�1 + ✓k � v

k .

ADMM solver for Lasso

minimize
✓

1

2
ky � X✓k22 + �kvk1 subject to ✓ = v,

Augmented Lagrangian

L(✓, v,�) = 1

2n
ky � X✓k22 + �kvk1 + ⌫

2
k✓ � v + �k22.

ADMM Updates

✓k = minimize
✓

1

2n
ky � X✓k22 +

⌫

2
k✓ � v

k�1 + �k�1k22.

v

k = minimize
v

�kvk1 + ⌫

2
kv � ✓k � �k�1k22.

�k = �k�1 + ✓k � v

k .

Getting started

I Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
(2011), “Distributed Optimization and Statistical Learning via
the Alternating Direction Method of Multipliers,” Found.
Trends Mach. Learn., 3, 1-122.

I Tseng, P. (1991), “Applications of a Splitting Algorithm to
Decomposition in Convex Programming and Variational
Inequalities,” SIAM Journal on Control and Optimization, 29,
119-138.

