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Optimization

Fundamental Problem:

For function f , find x? such that f (x?) ≤ f (x) for all x ∈ D.

Solve f ′(x) = 0 and show f ′′(x) > 0

Apply Newton’s Method

xk+1 = xk −
f ′(x)

f ′′(x)

Gradient Descent or Quasi-Newton (BFGS)

xk+1 = xk − cnf
′(x), where cn → 0

Random Search or Genetic Algorithm?
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Bayesian Optimization

Main Insight:

Let f be a realization of a stochastic process (even if it isn’t).

Define a sample space of functions and build a probability model

Use the model to quantify uncertainty about the true value of the
function

Use an acquisition function to decide where the minimum is most
likely to be

Iteratively update the model by evaluating the function

The acquisition function drives an exploitation-exploration trade-off.
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Applications in Statistics

Maximum Likelihood Estimation: For complicated models the
likelihood may not have a closed form derivative and is expensive to
evaluate (spatial model with n > 10000).

Tuning Parameter Selection/ Model Calibration: Optimize with
respect to all tuning parameters simultaneously instead of individually.

Optimal Bayesian Experimental Design: Let η be some design in a
space of possible designs D, we can define the expected utility of η as

Λ(η) =

∫
u(η, θ, y)p(y |θ, η)p(θ)dydθ,

find η? = argmax
η∈D

Λ(η).

Multi-armed Bandit Problems: For example A/B testing
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Gaussian Processes

Definition: A random function f whose domain is Rn where every
collection of points x = {x1, x2, ..., xk} ⊂ Rn the random vector
{f (x1), f (x2), ..., f (xk)} ∼ MVN (µ(x),Σ(x)).

Mean Function: Measures fixed, deterministic, trends and is often a
linear combination of basis functions (think linear regression)

Covariance Function: Measures the covariance between pairs of domain
locations. Usually this is assumed to have the following properties:

Stationary (same everywhere)

Isotropic (same in all directions)

Decays with distance

Examples:

Exponential - C (x , y) = e
1
ρ
‖x−y‖

Gaussian - C (x , y) = e
1

2ρ2
‖x−y‖2
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Differences in Covariance Functions

Here are random draws from mean zero Gaussian processes with different
covariance functions:

Exponential Covariance Gaussian Covariance
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Kriging (Gaussian Process Regression)

Gaussian processes allow us to make predictions at unobserved locations.
Let X1 be the observed locations and X2 be the unobserved locations.
Before data is collected we have:

[
X1

X2

]
∼ MVN

([
µ1
µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])

and using conditional expectations:

X2|X1 ∼ MVN
(
µ2 + Σ21Σ−111 (X1 − µ1),Σ22 − Σ21Σ−111 Σ12

)
.

We need some initial data to fit a Gaussian process, usually collected by
taking a Latin Hypercube Sample (space-filling design).
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Kriging cont.

Example: Fit a GP to the function f (x) = 4x2cos(x) on [−1.5, 1.5]
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Kriging cont.

Example: Fit a GP to the function f (x) = 4x2cos(x) on [−1.5, 1.5]

Take 5 point Latin Hypercube Sample and fit GP model to data
Red and Blue lines represent the 5th and 95th quantiles
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Kriging cont.

Example: Fit a GP to the function f (x) = 4x2cos(x) on [−1.5, 1.5]

Augment with 5 more function evaluations and refit GP model to data
Red and Blue lines represent the 5th and 95th quantiles
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Where to evaluate next?

Goal: Find the minimum of f

Observation: It’s unnecessary to evaluate where the minimum is unlikely

Definition: An acquisition function takes a model and tells us where the
most promising locations are

Expected Improvement (EI): Let an = min{f (x1), f (x2), ..., f (xn)} be
the smallest observed function value at stage n and Yn be the Gaussian
process fit to the observed data, then

EI (x) = E [max{0, an − Yn(x)}].

EI will be large where the function is known to be minimized or there
is uncertainty about its value

Maximize EI and sequentially update the GP

Converges to the minimum under regularity conditions
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Expected Improvement

Example: Minimize f (x) = 4x2cos(x) on [−1.5, 1.5]

Take 5 point Latin Hypercube Sample and fit GP model to data

Maximize EI (at x = 0.008)

Gaussian Process EI
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Expected Improvement

Example: Minimize f (x) = 4x2cos(x) on [−1.5, 1.5]

Augment data with (0.008, f (0.008) and refit GP model

Maximize EI (at x = 0.0000765)

Gaussian Process EI

Isaac J. Michaud (NCSU) Bayesian Optimization November 15, 2016 14 / 20



Branin-Hoo Function

f (x , y) =

(
−1.275x2

π
+

5x

π
+ y − 6

)2

+

(
10− 5

4π

)
cos(x) + 10
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Branin-Hoo Function Expected Improvement

Maximum at x = 0.5610115 and y = 0.1523989
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Branin-Hoo Function Expected Improvement
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Noisy Optimization

What happens if f can only be simulated using Monte Carlo?

Stochastic Gradient Decent (f ′ can be simulated)

Simultaneous Perturbation Stochastic Approximation (SPSA)

Random Search

Can we use Gaussian Processes? Yes we can! Just add a nugget and....

Expected Quantile Improvement:

EQI (x , τ2) = E [max(0,Qβ,min − Qβ(x)]

Looks at the improvement of the β quantile

EI is a special case when β = 0.5

τ2 is a tuning parameter (future expected variance)

Optimal Bayesian Experimental Design:

argmax
η

∫
u(η, θ, y)p(y |θ, η)p(θ)dydθ
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Stochastic Gradient Decent (f ′ can be simulated)

Simultaneous Perturbation Stochastic Approximation (SPSA)

Random Search

Can we use Gaussian Processes? Yes we can! Just add a nugget and....

Expected Quantile Improvement:

EQI (x , τ2) = E [max(0,Qβ,min − Qβ(x)]

Looks at the improvement of the β quantile

EI is a special case when β = 0.5

τ2 is a tuning parameter (future expected variance)

Optimal Bayesian Experimental Design:

argmax
η

∫
u(η, θ, y)p(y |θ, η)p(θ)dydθ
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Conclusions

Bayesian optimization provides the following benefits:

A probabilistic approach to optimization

Good convergence without gradients

Parsimonious in the number of function evaluations

Bayesian optimization is not, as Steven Boyd would say, a mature
technology. It needs a lot of work:

Clustering and multi-extrema identification

Gaussian process validation (i.e. does the surrogate fit the function)

Acquisition function optimization
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