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Optimization

Fundamental Problem:

For function f, find x* such that f(x*) < f(x) for all x € D.
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Optimization

Fundamental Problem:

For function f, find x* such that f(x*) < f(x) for all x € D.

@ Solve f'(x) = 0 and show f”(x) >0
@ Apply Newton's Method

f'(x)
Xk+1 = Xk — m

e Gradient Descent or Quasi-Newton (BFGS)

Xk41 = Xk — cnf'(x), where ¢, — 0

@ Random Search or Genetic Algorithm?
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Bayesian Optimization

Main Insight:

Let f be a realization of a stochastic process (even if it isn't).
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Bayesian Optimization

Main Insight:

Let f be a realization of a stochastic process (even if it isn't).

@ Define a sample space of functions and build a probability model

@ Use the model to quantify uncertainty about the true value of the
function

@ Use an acquisition function to decide where the minimum is most
likely to be

o lteratively update the model by evaluating the function

The acquisition function drives an exploitation-exploration trade-off.
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Applications in Statistics

Maximum Likelihood Estimation: For complicated models the
likelihood may not have a closed form derivative and is expensive to
evaluate (spatial model with n > 10000).
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Applications in Statistics

Maximum Likelihood Estimation: For complicated models the
likelihood may not have a closed form derivative and is expensive to
evaluate (spatial model with n > 10000).

Tuning Parameter Selection/ Model Calibration: Optimize with
respect to all tuning parameters simultaneously instead of individually.

Optimal Bayesian Experimental Design: Let 1 be some design in a
space of possible designs D, we can define the expected utility of 7 as

An) = / u(n, 8, y)p(y|0,m)p(0)dyd?,

find n* = A(n).
ind 1" = argmax (n)
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Applications in Statistics

Maximum Likelihood Estimation: For complicated models the
likelihood may not have a closed form derivative and is expensive to
evaluate (spatial model with n > 10000).

Tuning Parameter Selection/ Model Calibration: Optimize with
respect to all tuning parameters simultaneously instead of individually.

Optimal Bayesian Experimental Design: Let 1 be some design in a
space of possible designs D, we can define the expected utility of 7 as

Multi-armed Bandit Problems: For example A/B testing
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Gaussian Processes

Definition: A random function f whose domain is R” where every
collection of points x = {x1, x2, ..., xk } C R" the random vector

{f(x1), f(x2), ..oy F(xk)} ~ MVN (u(x), X(x)).
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Gaussian Processes

Definition: A random function f whose domain is R” where every
collection of points x = {x1, x2, ..., xk } C R" the random vector
[F(x1), F52), s £ i)} ~ MV (u(x), £(x)).

Mean Function: Measures fixed, deterministic, trends and is often a
linear combination of basis functions (think linear regression)

Covariance Function: Measures the covariance between pairs of domain
locations. Usually this is assumed to have the following properties:

e Stationary (same everywhere)

e Isotropic (same in all directions)

@ Decays with distance
Examples:

1
e Exponential - C(x,y) = iand

; o lbx=yI?
e Gaussian - C(x,y) =e%
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Differences in Covariance Functions

Here are random draws from mean zero Gaussian processes with different
covariance functions:

: WW i I
I LI
To 4z s a4 s "o vz s 4 s
Exponential Covariance Gaussian Covariance
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Kriging (Gaussian Process Regression)

Gaussian processes allow us to make predictions at unobserved locations.
Let X; be the observed locations and X5 be the unobserved locations.
Before data is collected we have:

Xi 1 11 X1
~ MVN ,
[ X2 ] ([NJ [ 11 X ])
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Xi 1 11 X1
~ MVN ,
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and using conditional expectations:
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Kriging (Gaussian Process Regression)

Gaussian processes allow us to make predictions at unobserved locations.

Let X; be the observed locations and X5 be the unobserved locations.
Before data is collected we have:

X1 ,U«lj| [ 211 212 })
~ MVN ,
[ X2 ] ([Mz Yo1 I
and using conditional expectations:
Xo| X1 ~ MVN (pi2 + 15777 (X1 — p1), Loz — T 577 2 12) -

We need some initial data to fit a Gaussian process, usually collected by
taking a Latin Hypercube Sample (space-filling design).

Isaac J. Michaud (NCSU)

Bayesian Optimization

November 15, 2016 8 /20



Example: Fit a GP to the function f(x) = 4x?cos(x) on [~1.5,1.5]

1.5

0.5

-0.56 0.0
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Example: Fit a GP to the function f(x) = 4x?cos(x) on [~1.5,1.5]

@ Take 5 point Latin Hypercube Sample and fit GP model to data
@ Red and Blue lines represent the 5t and 95" quantiles

response

1.5 1.0 -0.5 0.0 0.5 1.0 1.5

domain
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Example: Fit a GP to the function f(x) = 4x?cos(x) on [~1.5,1.5]

@ Augment with 5 more function evaluations and refit GP model to data
@ Red and Blue lines represent the 5t and 95" quantiles

response

domain
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Where to evaluate next?

Goal: Find the minimum of f
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Expected Improvement (El): Let a, = min{f(x1), f(x2), ..., f(x,)} be
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El(x) = E[max{0, a, — Ya(x)}].
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Where to evaluate next?

Goal: Find the minimum of f
Observation: It's unnecessary to evaluate where the minimum is unlikely

Definition: An acquisition function takes a model and tells us where the
most promising locations are

Expected Improvement (El): Let a, = min{f(x1), f(x2), ..., f(x,)} be
the smallest observed function value at stage n and Y}, be the Gaussian
process fit to the observed data, then

El(x) = E[max{0, a, — Ya(x)}].

o El will be large where the function is known to be minimized or there
is uncertainty about its value

@ Maximize El and sequentially update the GP
o Converges to the minimum under regularity conditions
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Expected Improvement

Example: Minimize f(x) = 4x?cos(x) on [—1.5,1.5]
@ Take 5 point Latin Hypercube Sample and fit GP model to data
e Maximize El (at x = 0.008)
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Expected Improvement

Example: Minimize f(x) = 4x?cos(x) on [—1.5,1.5]
e Augment data with (0.008, £(0.008) and refit GP model
e Maximize El (at x = 0.0000765)

response
I 1 1

y
0.00 002 0.04 0.06 0.08 0.10 0.12
|

1.5 1.0 0.5 0.0 0.5 1.0 15 -1.5 1.0 0.5 0.0 0.5 1.0 1.5
domain X
Gaussian Process El
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Branin-Hoo Function Expected Improvement

@ Maximum at x = 0.5610115 and y = 0.1523989

Expected Improvement for Branin-Hoo with n=9

o S
‘
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Branin-Hoo Function Expected Improvement

Branin-Hoo with 30 function evals

\ ® True Minima
® |nitial LHS

El Batch 1

‘. = EI Batch 2

1.0
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Noisy Optimization

What happens if f can only be simulated using Monte Carlo?
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e Simultaneous Perturbation Stochastic Approximation (SPSA)
@ Random Search

Can we use Gaussian Processes? Yes we can! Just add a nugget and....

Expected Quantile Improvement:
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@ Looks at the improvement of the 8 quantile
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Noisy Optimization

What happens if f can only be simulated using Monte Carlo?
@ Stochastic Gradient Decent (f’ can be simulated)

e Simultaneous Perturbation Stochastic Approximation (SPSA)
@ Random Search

Can we use Gaussian Processes? Yes we can! Just add a nugget and....

Expected Quantile Improvement:
EQI(x,72) = E[max(0, QB min — Qp(x)]

@ Looks at the improvement of the 8 quantile
o El is a special case when 5 =0.5
o 72 is a tuning parameter (future expected variance)

Optimal Bayesian Experimental Design:

argmaX/U(n,ﬁ,y)p(yIG,n)p(é’)dde
n

Isaac J. Michaud (NCSU) Bayesian Optimization November 15, 2016



Conclusions

Bayesian optimization provides the following benefits:

@ A probabilistic approach to optimization
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Conclusions

Bayesian optimization provides the following benefits:

@ A probabilistic approach to optimization
@ Good convergence without gradients

@ Parsimonious in the number of function evaluations

Bayesian optimization is not, as Steven Boyd would say, a mature
technology. It needs a lot of work:

@ Clustering and multi-extrema identification
o Gaussian process validation (i.e. does the surrogate fit the function)

@ Acquisition function optimization
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